Privately Evaluating Decision Trees and Random Forests

<u>David J. Wu</u>, Tony Feng, Michael Naehrig, and Kristin Lauter

July, 2016

Machine Learning as a Service

Big Data + Machine Learning = New Applications

Machine Learning as a Service

Big Data + Machine Learning = New Risks

adversary that compromises cloud service learns patient profile

Machine Learning as a Service

Big Data + Machine Learning = New Risks

malicious client might recover information about the model

Our Work: Decision Trees

- Nonlinear models for regression or classification
- Consists of a series of decision variables (tests on the feature vector)
- Evaluation corresponds to tree traversal

Input: feature vector $[x_1, ..., x_n]$

Fully Private Decision Tree Evaluation

Fully Private Decision Tree Evaluation

Focus on model evaluation – assume server already has model

input: feature vector *x*

input: decision tree \mathcal{T}

Comparison of Approaches

Not drawn to scale

Comparison of Approaches

Bandwidth

Not drawn to scale

Protocol Building Blocks: Comparisons

Require protocol to compare components of client's feature vector with thresholds

Comparison Protocol [DGK07, BPGT15]

client input: *x*

server input: *y*

Private Decision Tree Evaluation

Suppose client knows b_1 , b_2 , and the structure of the tree

Then, client can compute the *index* of the outcome

Private Decision Tree Evaluation

Suppose client knows the index of the outcome

Problem reduces to oblivious transfer: treat leaves as database, client knows index

Oblivious Transfer (OT) [Kil88, NP99, NP01]

client input: index *i*

server input: database $\{x_1, \dots, x_n\}$

Private Decision Tree Evaluation

Suppose client knows the index of the outcome

Problem reduces to oblivious transfer: treat leaves as database, client knows index

leaves become **OT** database

$$\begin{bmatrix} c_1 & c_2 & c_3 \end{bmatrix}$$

Private Decision Tree Evaluation

- 1. Client obtains b_1 , b_2 using comparison protocol
- Client uses OT to retrieve classification value

Problem: Requires client to learn/know structure of the tree

Hiding the Structure

1. Padding: Insert "dummy" nodes to obtain complete tree

Hiding the Structure

2. Randomization: Randomly flip decision variables:

$$\bar{b}_i := 1 - b_i$$

Private Decision Tree Evaluation

- 1. Server: Pad and permute the decision tree
- 2. Server & Client: Comparison protocol to compute b_i in permuted tree
- **3. Client:** Compute the index *j* of the leaf node
- **4.** Client & Server: Engage in OT to obtain c_i

Theorem. This protocol is secure against *semi-honest* adversaries.

Further Extensions

evaluating random forests without revealing individual classifications

Ensuring security against malicious adversaries

See paper for details!

Experiments

Implemented private decision tree + random forest protocol

Benchmarks taken between a laptop client and an EC2 server

Decision Tree Evaluation on ECG Data

	Coourity Lovel	Computation (s)		Dandwidth (KD)
	Security Level	Client	Server	Bandwidth (KB)
[BFK+09]	80	2.609	6.260	112.2
[BPGT14]	80	2.297	1.723	3555
Generic 2PC (Estimated)	128	-	-	≥ 180.5
This work	128	0.091	0.188	101.9

Experimental Parameters:

• Data Dimension: 6

Depth of Decision Tree: 4

• Number of Comparisons: 6

Decision Tree Evaluation on ECG Data

[BFK+
[BPGT]
Generic (Estima
This w

- Data Dimension: 6
- Depth of Decision Tree: 4
- Number of Comparisons: 6

Performance for Complete Decision Trees

Conclusions

Simple protocols for decision tree evaluation in both semihonest (and malicious) setting

Semi-honest (and malicious-secure) decision tree protocols provide new computation/communication tradeoffs

Thanks!

http://eprint.iacr.org/2015/386