
Private Information Retrieval:
Opportunities and Challenges

David Wu
June 2025

based on joint work with Samir Menon



Private Information Retrieval (PIR)
[CGKS95]
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Privacy: Server does not learn 𝑖

Efficiency: communication is sublinear 
in database size (ideally: polylog 𝑁 )

client database

Correctness: Client learns 𝑟𝑖

This talk: focus only on single-server setting



Private Information Retrieval (PIR)
[CGKS95]

record 𝑖

Basic building block in many privacy-preserving protocols
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Private content delivery

Certificate transparency auditing

Contact discovery
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Private web search Private DNS

Private contact tracing

Password breach checking



Application to Certificate Transparency
[LLK13, Lau14]

certificate authorities

certificate transparency
log server

certificate

signed certificate 
timestamp

SCT

Goal: monitor issuance of certificates and detect rogue certificates

Approach:
• When certificate authority (CA) issues certificate, it deposits it into 

a log server and receives a signed certificate timestamp (SCT)
• Servers can check log server to see all certificates issued for their 

domain name



Application to Certificate Transparency
[LLK13, Lau14]

Goal: monitor issuance of certificates and detect rogue certificates

domain owner certificate transparency
log server

initiate TLS 
connection

SCT

SCT

Proof of 
membership

A valid SCT means that the certificate was deposited into a log server

But is the log server honest? Clients will periodically audit log server to check that SCT is actually present

Privacy concern: clients reveal 
browsing habits to the log server

Today: Chrome reveals a few bits of the hash of the SCT (𝑘-anonymity-based solution) 

Clients only accepts certificates with SCTs



PIR for Certificate Transparency
[LG15, KOR19, HHCMV23]

domain owner certificate transparency
log server

initiate TLS 
connection

SCT

SCT

Proof of 
membership

A valid SCT means that the certificate was deposited into a log server

But is the log server honest? Clients will periodically audit log server to check that SCT is actually present

Privacy concern: clients reveal 
browsing habits to the log server

Proposal: client checks SCT membership using PIR

[HHCMV23]: Server maintains a Bloom filter of the set of SCTs deposited

To audit, client reads one bit of the Bloom filter (high false positive rate, but handled by relying on many clients)



How Efficient is PIR?

NDSS 2007

Take-away (2007): PIR schemes are 
too expensive and better to just 

have client download the database; 
need new constructions

Recurring theme in cryptography: 
powerful tools, but often 

(concretely) expensive
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[KO97, Pai99]

Early number-theoretic constructions: 
throughput on the order of tens of KB/s 
(often slower than network bandwidth!)
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First lattice-based PIR instantiation: 
significantly faster than number-theoretic 

constructions (first scheme better than 
trivial PIR in many settings!)

XPIR [MBFK16]
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XPIR [MBFK16]

SealPIR [ACLS18]

FastPIR [AYAAG21]

OnionPIR [MCR21]

Memory bandwidth: Limit for linear-scan-based systems

Spiral [MW22]

SimplePIR [HHCMV23]
YPIR [MW24]

HintlessPIR [LMRS24]

Takeaway: Single-server PIR protocols are extremely fast (essentially 
as fast as possible if server must perform a linear scan)

Communication can be further improved: fetching 1 byte from 8 GB 
database currently requires 1.5 MB upload and 12 KB download

100,000× 
improvement!



PIR from Homomorphic Encryption 
[KO97]

Starting point: a 𝑁 construction (𝑁 = number of records)

𝑟11 𝑟12 𝑟13 𝑟14

𝑟21 𝑟22 𝑟23 𝑟24

𝑟31 𝑟32 𝑟33 𝑟34

𝑟41 𝑟42 𝑟43 𝑟44

Arrange the database as a

𝑁-by- 𝑁 matrix



PIR from Homomorphic Encryption 
[KO97]

Starting point: a 𝑁 construction (𝑁 = number of records)

𝑟11 𝑟12 𝑟13 𝑟14
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Encrypt a 0/1 vector indicating the row 
containing the desired record

Homomorphically compute product 
between query vector and database matrix



PIR from Homomorphic Encryption 
[KO97]

Starting point: a 𝑁 construction (𝑁 = number of records)

𝑟11 𝑟12 𝑟13 𝑟14

𝑟21 𝑟22 𝑟23 𝑟24

𝑟31 𝑟32 𝑟33 𝑟34

𝑟41 𝑟42 𝑟43 𝑟44

Arrange the database as a

𝑁-by- 𝑁 matrix

0

0

1

0

Encrypt a 0/1 vector indicating the row 
containing the desired record

𝑟31 𝑟32 𝑟33 𝑟34

Homomorphically compute product 
between query vector and database matrix

Database is in the clear, so additive 
homomorphism suffices



PIR from Homomorphic Encryption 
[KO97]

Starting point: a 𝑁 construction (𝑁 = number of records)

Encrypt a 0/1 vector indicating the row 
containing the desired record

𝑟31 𝑟32 𝑟33 𝑟34

Homomorphically compute product 
between query vector and database matrix

Client decrypts to 
learn records

Response size: 𝑂𝜆 𝑁



SimplePIR: Lightweight PIR from LWE
[HHCMV23]

Building block: Regev’s linearly homomorphic encryption from LWE [Reg05]

𝑨𝑛 = 1024

Elements of 𝑨 are random 
32-bit integers

𝑚 = 𝑁 (𝑁 is size of database)

𝒃𝐓1
𝒃 is a ciphertext (encrypts a 

𝑁-dimension bit vector)

All components are elements of ℤ𝑞 = ℤ232  (i.e., 32-bit integers)

Query structure in SimplePIR



SimplePIR: Lightweight PIR from LWE
[HHCMV23]

𝑨𝑛 = 1024

𝑚 = 𝑁 (𝑁 is size of database)

𝒃𝐓1

All components are elements of ℤ𝑞 = ℤ232  (i.e., 32-bit integers)

Query structure in SimplePIR

Concretely:
• Suppose plaintext space (i.e., record size) is 

1 byte (element of ℤ𝑝 = ℤ28)

• Secret key is 𝒔 ∈ ℤ𝑞
𝑛

Building block: Regev’s linearly homomorphic encryption from LWE [Reg05]



SimplePIR: Lightweight PIR from LWE
[HHCMV23]

𝑨𝑛 = 1024

𝑚 = 𝑁 (𝑁 is size of database)

𝒃𝐓 = 𝒔T𝑨 + 𝒆T + Τ𝑞 𝑝 𝒘T1

All components are elements of ℤ𝑞 = ℤ232  (i.e., 32-bit integers)

Ciphertext structure in Regev

Concretely:
• Suppose plaintext space (i.e., record size) is 

1 byte (element of ℤ𝑝 = ℤ28)

• Secret key is 𝒔 ∈ ℤ𝑞
𝑛

• Ciphertext (encrypting 𝒘) is 
𝒃T = 𝒔T𝑨 + 𝒆T + Τ𝑞 𝑝 𝒘T

 where 𝒆T is small error vector
• To decrypt, compute

𝒃T − 𝒔T𝑨 = 𝒆T + Τ𝑞 𝑝 𝒘T

 and round

Building block: Regev’s linearly homomorphic encryption from LWE [Reg05]



SimplePIR: Lightweight PIR from LWE
[HHCMV23]

𝑨𝑛 = 1024

𝑚 = 𝑁 (𝑁 is size of database)

𝒃𝐓 = 𝒔T𝑨 + 𝒆T + Τ𝑞 𝑝 𝒘T1

All components are elements of ℤ𝑞 = ℤ232  (i.e., 32-bit integers)

Database 𝑫 ∈ ℤ𝑝
𝑚×𝑚

Building block: Regev’s linearly homomorphic encryption from LWE [Reg05]



SimplePIR: Lightweight PIR from LWE
[HHCMV23]

𝑨𝑫𝑛 = 1024

𝑚 = 𝑁 (𝑁 is size of database)

𝒃𝐓𝑫 = 𝒔T𝑨𝑫 + 𝒆T𝑫 + Τ𝑞 𝑝 𝒘T𝑫1

All components are elements of ℤ𝑞 = ℤ232  (i.e., 32-bit integers)

Decryption:
𝒃T𝑫 − 𝒔T𝑨𝑫 ≈ Τ𝑞 𝑝 𝒘T𝑫

Suppose 𝒘 is an indicator vector 
(i.e., 𝑤𝑗 = 1 and 𝑤𝑖 = 0 if 𝑖 ≠ 𝑗)

Then 𝒘T𝑫 is 𝑗th row of 𝑫

Building block: Regev’s linearly homomorphic encryption from LWE [Reg05]



SimplePIR: Lightweight PIR from LWE
[HHCMV23]

𝑨

𝒃𝐓 = 𝒔T𝑨 + 𝒆T + Τ𝑞 𝑝 𝒘T

𝑨𝑫

𝒃𝐓𝑫

Database

𝑫 ∈ ℤ𝑝
𝑁× 𝑁

Query size:

   (𝑛 + 1) 𝑁 elements over ℤ𝑞

Server computation:
   2(𝑛 + 1)𝑁 operations over ℤ𝑞

Response size:

𝑛 + 1 𝑁 elements over ℤ𝑞

2000 operations per byte of database!

To recover record in row 𝑗: 𝑞 = 232, 𝑝 = 28, 𝑛 = 210



SimplePIR: Lightweight PIR from LWE
[HHCMV23]

Key insight in SimplePIR: 𝑨 is query-independent so move computation of 𝑨𝑫 offline

𝑨

𝒃𝐓 = 𝒔T𝑨 + 𝒆T + Τ𝑞 𝑝 𝒘T

𝑨𝑫

𝒃𝐓𝑫

Database

𝑫 ∈ ℤ𝑝
𝑁× 𝑁

Query size:

   (𝑛 + 1) 𝑁 elements over ℤ𝑞

Server computation:
   2(𝑛 + 1)𝑁 operations over ℤ𝑞

Response size:

𝑛 + 1 𝑁 elements over ℤ𝑞

2000 operations per byte of database!



SimplePIR: Lightweight PIR from LWE
[HHCMV23]

Key insight in SimplePIR: 𝑨 is query-independent so move computation of 𝑨𝑫 offline

𝒃𝐓 = 𝒔T𝑨 + 𝒆T + Τ𝑞 𝑝 𝒘T

𝑨𝑫

𝒃𝐓𝑫

Database

𝑫 ∈ ℤ𝑝
𝑁× 𝑁

Server computation:
   2𝑁 operations over ℤ𝑞Query and response size:

𝑁 elements over ℤ𝑞 2 operations per byte of database!

offline phase

online phase



SimplePIR: Lightweight PIR from LWE
[HHCMV23]

Key insight in SimplePIR: 𝑨 is query-independent so move computation of 𝑨𝑫 offline

𝒃𝐓 = 𝒔T𝑨 + 𝒆T + Τ𝑞 𝑝 𝒘T

𝑨𝑫

𝒃𝐓𝑫

Database

𝑫 ∈ ℤ𝑝
𝑁× 𝑁

Server computation:
   2𝑁 operations over ℤ𝑞Query and response size:

𝑁 elements over ℤ𝑞 2 operations per byte of database!

offline phase

online phase

On modern processors, can 
process query at memory 

bandwidth (best possible if 
protocol performs linear-scan)

Limitation: hint is large (𝑛 × 
larger than response) and needs 

to be updated whenever 
database changes



PIR with Silent Preprocessing

Silent preprocessing: allow offline preprocessing, but no communication

No need to manage hints; better suited for dynamic databases

Approach: compress the hint and include as part of the response [HintlessPIR; LMRS24] [YPIR; MW24]

Why is the SimplePIR hint so large?

hint: 𝑨𝑫𝑛 = 1024

𝑚 = 𝑁 (𝑁 is size of database)

response: 𝒃𝐓𝑫

𝑗th column of hint is the “randomness” for the 

ciphertext that encrypts the 𝑗th record

DoublePIR: use PIR to retrieve column 𝑗 of hint; this still 
needs a hint for the (smaller) database 𝑨𝑫

Hint is large because Regev encryption has poor rate: 
encrypting one ℤ𝑝 element requires 𝑛 + 1  ℤ𝑞 elements



SimplePIR using Polynomial Rings

Common technique to get better rate: use polynomial rings

Plaintext space: ℤ𝑝 𝑅𝑝 = Τℤ𝑝 𝑥 𝑥𝑑 + 1

degree-𝑑 polynomials with coefficients in ℤ𝑝Ciphertext space:

ℤ𝑞
𝑛+1

𝑅𝑞
2 = Τℤ𝑞 𝑥 𝑥𝑑 + 1

2

rate =
size of plaintext

size of ciphertext
=

log 𝑝

𝑛 + 1 log 𝑞

log 𝑝

2 log 𝑞

Recall 𝑛 = 210 = 1024, so using rings gives over 500× reduction in size

rings allow packing more data into each ciphertext

security relies on ring learning with errors (RLWE)



SimplePIR using Polynomial Rings

Common technique to get better rate: use polynomial rings

Plaintext space: ℤ𝑝 𝑅𝑝 = Τℤ𝑝 𝑥 𝑥𝑑 + 1

degree-𝑑 polynomials with coefficients in ℤ𝑝Ciphertext space:

ℤ𝑞
𝑛+1

𝑅𝑞
2 = Τℤ𝑞 𝑥 𝑥𝑑 + 1

2

rate =
size of plaintext

size of ciphertext
=

log 𝑝

𝑛 + 1 log 𝑞

log 𝑝

2 log 𝑞

Recall 𝑛 = 210 = 1024, so using rings gives over 500× reduction in size

rings allow packing more data into each ciphertext

security relies on ring learning with errors (RLWE)

SimplePIR over polynomial rings incurs
≈ log 𝑞/log 𝑝 ≈ 4 overhead (due to blow-up in 

size of database representation)



YPIR: Lightweight Hint Compression
[MW24]

YPIR approach: pack LWE ciphertexts into an RLWE ciphertext

Each column is an LWE 
ciphertext encrypting a 

record 𝑧𝑖 ∈ ℤ𝑝

Limitation: LWE
ciphertext has poor rate

Observation: when 𝑨 is a structured matrix then each column 
is also an RLWE ciphertext that encrypts a polynomial whose 
constant coefficient is 𝑧𝑖

For example, 𝑖th column might decrypt to the polynomial
𝑧𝑖 + 𝑟1𝑥 + 𝑟2𝑥2 + ⋯ + 𝑟𝑛−1𝑥𝑛−1

where 𝑟1, … , 𝑟𝑛−1 are (arbitrary) coefficients and 𝑛 = 1024

Observation [CDKS21]: When 𝑛 = 2𝑑, there is a simple 
homomorphic procedure that maps encryption of polynomial 
𝑓 to an encryption of 𝑓 0



YPIR: Lightweight Hint Compression
[MW24]

YPIR approach: replace nested encryption with an LWE-to-RLWE packing technique

𝑓1(𝑥) 𝑓𝑚 𝑥

𝑓1 0 = 𝑧1 𝑓𝑚 0 = 𝑧𝑚

Step 1: Homomorphically extract 
constant term

Each column now encrypts a 
constant polynomial (equal to 

the record)

Step 2: Homomorphically evaluate 

the linear function σ𝑖∈ 𝑛 𝑧𝑖𝑥𝑖−1 on 

blocks of 𝑛 columns

𝑧1

(Encrypted message)

𝑧𝑚𝑧2 𝑧3 ⋯
෍

𝑖∈ 𝑛

𝑧𝑖𝑥𝑖−1 ෍

𝑖∈ 𝑛

𝑧𝑖+𝑛𝑥𝑖−1



YPIR: Lightweight Hint Compression
[MW24]

YPIR approach: replace nested encryption with an LWE-to-RLWE packing technique

𝑓1(𝑥) 𝑓𝑚 𝑥

𝑓1 0 = 𝑧1 𝑓𝑚 0 = 𝑧𝑚

Step 1: Homomorphically extract 
constant term

Step 2: Homomorphically evaluate 

the linear function σ𝑖∈ 𝑛 𝑧𝑖𝑥𝑖−1 on 

blocks of 𝑛 columns

(Encrypted message)

෍

𝑖∈ 𝑛

𝑧𝑖𝑥𝑖−1 ෍

𝑖∈ 𝑛

𝑧𝑖+𝑛𝑥𝑖−1

SimplePIR response size:
𝑛 + 1 𝑚 elements of ℤ𝑞

Packed RLWE response size:
𝑚

𝑛
⋅ 2𝑛 = 2𝑚 elements of ℤ𝑞

Recall: 𝑛 ≥ 210, so substantial 
reduction in practice

Increases server compute, but 
observe that packing is applied to 

the SimplePIR response, which 

has size 𝑂𝜆 𝑁



YPIR: Lightweight Hint Compression
[MW24]

YPIR approach: replace nested encryption with an LWE-to-RLWE packing technique

Step 2: Homomorphically evaluate 

the linear function σ𝑖∈ 𝑛 𝑧𝑖𝑥𝑖−1 on 

blocks of 𝑛 columns

෍

𝑖∈ 𝑛

𝑧𝑖𝑥𝑖−1 ෍

𝑖∈ 𝑛

𝑧𝑖+𝑛𝑥𝑖−1

SimplePIR response size:
𝑛 + 1 𝑚 elements of ℤ𝑞

Packed RLWE response size:
𝑚

𝑛
⋅ 2𝑛 = 2𝑚 elements of ℤ𝑞

Recall: 𝑛 ≥ 210, so substantial 
reduction in practice

Increases server compute, but 
observe that packing is applied to 

the SimplePIR response, which 

has size 𝑂𝜆 𝑁

If we apply packing to 
DoublePIR (SimplePIR with 1 

recursive step), then packing is 
applied to 𝑂𝜆 1  size response



YPIR: Lightweight Hint Compression
[MW24]

𝒃𝐓 = 𝒔T𝑨 + 𝒆T + Τ𝑞 𝑝 𝒘T

Database

𝑫 ∈ ℤ𝑝
𝑁× 𝑁

offline phase

online phase

𝑨𝑫

Compute:

No communication!

packing keys (key-switching)

packed response



PIR for Certificate Transparency Auditing

Setup: 5 billion SCTs, encoded as Bloom filter with 236 bits (8 GB)

SCT audit consists of a single PIR query

DoublePIR HintlessPIR YPIR

Download

Upload

Download

Throughput

O
ff

lin
e

O
n

lin
e

14 MB – –

960 KB

12 KB

12.5 GB/s

1.4 MB

1.7 MB

4.9 GB/s

1.5 MB

12 KB

11.6 GB/s

[HHCMV23] uses DoublePIR

1.6× larger queries and 93% of the throughput of fastest scheme



PIR for Certificate Transparency Auditing

Setup: 5 billion SCTs, encoded as Bloom filter with 236 bits (8 GB)

SCT audit consists of a single PIR query

Communication

Computation

TotalSe
rv

er
 C

o
st

s

Assuming each client performs 20 SCT audits each week (based on client making 104 TLS connections and 
auditing Τ1 500 fraction of connections) – achieves detection rate of Τ1 1000 (Chrome’s current approach)

DoublePIR

$1.25

$0.19

$1.44

WeeklySCT Update Frequency

HintlessPIR

$3.22

$0.49

$3.71

Daily

YPIR

$0.02

$0.21

$0.23

Daily

DoublePIR

$8.63

$0.25

$8.88

Daily

Weekly server costs based on AWS cost model (free inbound communication) to support 1000 clients:

84%
cheaper!



PIR for Certificate Transparency Auditing

Setup: 5 billion SCTs, encoded as Bloom filter with 236 bits (8 GB)

SCT audit consists of a single PIR query

Communication

Computation

TotalSe
rv

er
 C
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st

s

Assuming each client performs 20 SCT audits each week (based on client making 104 TLS connections and 
auditing Τ1 500 fraction of connections) – achieves detection rate of Τ1 1000 (Chrome’s current approach)

DoublePIR

$1.25

$0.19

$1.44

WeeklySCT Update Frequency

HintlessPIR

$3.22

$0.49

$3.71

Daily

YPIR

$0.02

$0.21

$0.23

Daily

DoublePIR

$8.63

$0.25

$8.88

Daily

Weekly server costs based on AWS cost model (free inbound communication) to support 1000 clients:

84%
cheaper!

𝑘-anonymity (Chrome): 2.3 MB total 
communication per client per week

YPIR: 29 MB total communication per client 
per week (12.6× higher)



PIR Throughput

Memory Bandwidth

Large databases: linear scan 
dominates over packing costs



Retrieving Larger Records

Application: Password breach monitoring
Consider database with SHA-256 hashes of 250 million compromised passwords

Database size is 8 GB, partition into 250,000 records of size 32 KB

Technically, this is keyword PIR, but can be reduced to PIR via hashing

SimplePIR HintlessPIR YPIR

Download

Upload

Download

Throughput

O
ff

lin
e

O
n

lin
e

362 MB – –

362 KB

362 KB

11 GB/s

1.4 MB

1.7 MB

5 GB/s

1.3 MB

228 KB

5 GB/s

Extra computational overhead from packing transformation



Recent Improvements (for Private SCT Auditing)

Distributional PIR [LHC25]: Better performance if we have prior information on query 
distribution (e.g., private SCT auditing)

• Distributional PIR + YPIR for private SCT auditing: reduces computational costs by 12× 
and communication by 3×

• Cryptographic privacy at 4× communication cost over Chrome’s 𝑘-anonymity-based 
approach

System architecture for private SCT auditing [HPW25]: Consider better data structures and 
system architecture to support private SCT auditing – “seem to bring wide SCT auditing to 
the brink of practicality”

Existing single-server PIR protocols are fast enough to
support some privacy-preserving applications at scale

Recent progress: Apple’s use of PIR for private caller ID lookup and private image search



Recent Developments in PIR

The bottleneck for linear-scan-based PIR is the memory bandwidth, and recent schemes 
essentially hit this limit – will not cut it when database is 100 GB or 1 TB or even larger

Piano [ZPSZ23], QuarterPIR [GZS24], [RMS24], Plinko [HPPY25], [WR25]

Sublinear server computational costs (can scale better to databases that are >100 GB)

Preprocessing phase requires streaming the entire database (and client storing some state)

Can avoid streaming the database in the two-server model (but rely on non-collusion 
assumption)



Doubly-Efficient PIR

• Server performs one-time encoding of the database 
• In online phase, server can then answer queries by reading polylog 𝑁  bits of the 

encoded value (no client-specific state needed)

Implication: private data access is essentially free (in an asymptotic sense)

[CHR17, BIPW17, LMW23]

Computation:

Communication:

Without privacy: log 𝑁 bits

With privacy: log 𝑁 + ෨𝑂 𝜆  bits (where 𝜆 is a security parameter) [BV11]

Without privacy: 1 probe

With privacy: poly 𝜆, log 𝑁  probes [LMW23]



Doubly-Efficient PIR

• Server performs one-time encoding of the database 
• In online phase, server can then answer queries by reading polylog 𝑁  bits of the 

encoded value (no client-specific state needed)

Implication: private data access is essentially free (in an asymptotic sense)

[CHR17, BIPW17, LMW23]

Computation:

Communication:

Without privacy: log 𝑁 bits

With privacy: log 𝑁 + ෨𝑂 𝜆  bits (where 𝜆 is a security parameter) [BV11]

Without privacy: 1 probe

With privacy: poly 𝜆, log 𝑁  probes [LMW23]

Limitation: Still far from practical

For 350 MB database [OPPW24]:
• Size of server encoding is 412 PB (259 bytes)
• Encoding time: > 8 million core-years (> $4 billion)
• Communication: 573 MB (larger than database)
• Computation: 4.3 core-weeks ($39/query)

Open problem: Practical doubly-efficient PIR (interesting even in multi-server setting)



Open Problems

Thank you!

Reduce concrete communication costs of PIR with silent preprocessing

Current approaches all have 𝑂 𝑁  communication – can we get to polylog 𝑁  with 

similar (concrete) computational overhead

Practical doubly-efficient PIR (single-server or multi-server)

What will it take to deploy PIR in practical systems?

Recent progress: Apple’s use of PIR for private caller ID lookup and private image search
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