
Private Information Retrieval:
Opportunities and Challenges

David Wu
June 2025

based on joint work with Samir Menon

Private Information Retrieval (PIR)
[CGKS95]

𝒓𝟏

𝒓𝟐

⋮

𝒓𝑵

𝒓𝒊

record 𝑖

Privacy: Server does not learn 𝑖

Efficiency: communication is sublinear
in database size (ideally: polylog 𝑁)

client database

Correctness: Client learns 𝑟𝑖

This talk: focus only on single-server setting

Private Information Retrieval (PIR)
[CGKS95]

record 𝑖

Basic building block in many privacy-preserving protocols

𝒓𝟏

𝒓𝟐

⋮

𝒓𝑵

client database

Metadata-private messaging

Private content delivery

Certificate transparency auditing

Contact discovery

Private navigation

Private web search Private DNS

Private contact tracing

Password breach checking

Application to Certificate Transparency
[LLK13, Lau14]

certificate authorities

certificate transparency
log server

certificate

signed certificate
timestamp

SCT

Goal: monitor issuance of certificates and detect rogue certificates

Approach:
• When certificate authority (CA) issues certificate, it deposits it into

a log server and receives a signed certificate timestamp (SCT)
• Servers can check log server to see all certificates issued for their

domain name

Application to Certificate Transparency
[LLK13, Lau14]

Goal: monitor issuance of certificates and detect rogue certificates

domain owner certificate transparency
log server

initiate TLS
connection

SCT

SCT

Proof of
membership

A valid SCT means that the certificate was deposited into a log server

But is the log server honest? Clients will periodically audit log server to check that SCT is actually present

Privacy concern: clients reveal
browsing habits to the log server

Today: Chrome reveals a few bits of the hash of the SCT (𝑘-anonymity-based solution)

Clients only accepts certificates with SCTs

PIR for Certificate Transparency
[LG15, KOR19, HHCMV23]

domain owner certificate transparency
log server

initiate TLS
connection

SCT

SCT

Proof of
membership

A valid SCT means that the certificate was deposited into a log server

But is the log server honest? Clients will periodically audit log server to check that SCT is actually present

Privacy concern: clients reveal
browsing habits to the log server

Proposal: client checks SCT membership using PIR

[HHCMV23]: Server maintains a Bloom filter of the set of SCTs deposited

To audit, client reads one bit of the Bloom filter (high false positive rate, but handled by relying on many clients)

How Efficient is PIR?

NDSS 2007

Take-away (2007): PIR schemes are
too expensive and better to just

have client download the database;
need new constructions

Recurring theme in cryptography:
powerful tools, but often

(concretely) expensive

1

25 Years of PIR Research
Se

rv
er

 t
h

ro
u

gh
p

u
t

(M
B

/s
/c

o
re

)

1995

0.1

throughput =
database size

server computation time

how fast the server can process a query as a
function of database size

2020 20252015201020052000

10

100

1000

10000

1

25 Years of PIR Research
Se

rv
er

 t
h

ro
u

gh
p

u
t

(M
B

/s
/c

o
re

)

1995

0.1

throughput =
database size

server computation time

how fast the server can process a query as a
function of database size

2020 20252015201020052000

10

100

1000

10000

[KO97, Pai99]

Early number-theoretic constructions:
throughput on the order of tens of KB/s
(often slower than network bandwidth!)

1

25 Years of PIR Research
Se

rv
er

 t
h

ro
u

gh
p

u
t

(M
B

/s
/c

o
re

)

1995

0.1

throughput =
database size

server computation time

how fast the server can process a query as a
function of database size

2020 20252015201020052000

10

100

1000

10000

[KO97, Pai99]

First lattice-based PIR instantiation:
significantly faster than number-theoretic

constructions (first scheme better than
trivial PIR in many settings!)

XPIR [MBFK16]

1

25 Years of PIR Research
Se

rv
er

 t
h

ro
u

gh
p

u
t

(M
B

/s
/c

o
re

)

1995

0.1

2020 20252015201020052000

10

100

1000

10000

[KO97, Pai99]

XPIR [MBFK16]

SealPIR [ACLS18]

FastPIR [AYAAG21]

OnionPIR [MCR21]

Memory bandwidth: Limit for linear-scan-based systems

Spiral [MW22]

SimplePIR [HHCMV23]
YPIR [MW24]

HintlessPIR [LMRS24]

Takeaway: Single-server PIR protocols are extremely fast (essentially
as fast as possible if server must perform a linear scan)

Communication can be further improved: fetching 1 byte from 8 GB
database currently requires 1.5 MB upload and 12 KB download

100,000×
improvement!

PIR from Homomorphic Encryption
[KO97]

Starting point: a 𝑁 construction (𝑁 = number of records)

𝑟11 𝑟12 𝑟13 𝑟14

𝑟21 𝑟22 𝑟23 𝑟24

𝑟31 𝑟32 𝑟33 𝑟34

𝑟41 𝑟42 𝑟43 𝑟44

Arrange the database as a

𝑁-by- 𝑁 matrix

PIR from Homomorphic Encryption
[KO97]

Starting point: a 𝑁 construction (𝑁 = number of records)

𝑟11 𝑟12 𝑟13 𝑟14

𝑟21 𝑟22 𝑟23 𝑟24

𝑟31 𝑟32 𝑟33 𝑟34

𝑟41 𝑟42 𝑟43 𝑟44

Arrange the database as a

𝑁-by- 𝑁 matrix

0

0

1

0

Encrypt a 0/1 vector indicating the row
containing the desired record

Homomorphically compute product
between query vector and database matrix

PIR from Homomorphic Encryption
[KO97]

Starting point: a 𝑁 construction (𝑁 = number of records)

𝑟11 𝑟12 𝑟13 𝑟14

𝑟21 𝑟22 𝑟23 𝑟24

𝑟31 𝑟32 𝑟33 𝑟34

𝑟41 𝑟42 𝑟43 𝑟44

Arrange the database as a

𝑁-by- 𝑁 matrix

0

0

1

0

Encrypt a 0/1 vector indicating the row
containing the desired record

𝑟31 𝑟32 𝑟33 𝑟34

Homomorphically compute product
between query vector and database matrix

Database is in the clear, so additive
homomorphism suffices

PIR from Homomorphic Encryption
[KO97]

Starting point: a 𝑁 construction (𝑁 = number of records)

Encrypt a 0/1 vector indicating the row
containing the desired record

𝑟31 𝑟32 𝑟33 𝑟34

Homomorphically compute product
between query vector and database matrix

Client decrypts to
learn records

Response size: 𝑂𝜆 𝑁

SimplePIR: Lightweight PIR from LWE
[HHCMV23]

Building block: Regev’s linearly homomorphic encryption from LWE [Reg05]

𝑨𝑛 = 1024

Elements of 𝑨 are random
32-bit integers

𝑚 = 𝑁 (𝑁 is size of database)

𝒃𝐓1
𝒃 is a ciphertext (encrypts a

𝑁-dimension bit vector)

All components are elements of ℤ𝑞 = ℤ232 (i.e., 32-bit integers)

Query structure in SimplePIR

SimplePIR: Lightweight PIR from LWE
[HHCMV23]

𝑨𝑛 = 1024

𝑚 = 𝑁 (𝑁 is size of database)

𝒃𝐓1

All components are elements of ℤ𝑞 = ℤ232 (i.e., 32-bit integers)

Query structure in SimplePIR

Concretely:
• Suppose plaintext space (i.e., record size) is

1 byte (element of ℤ𝑝 = ℤ28)

• Secret key is 𝒔 ∈ ℤ𝑞
𝑛

Building block: Regev’s linearly homomorphic encryption from LWE [Reg05]

SimplePIR: Lightweight PIR from LWE
[HHCMV23]

𝑨𝑛 = 1024

𝑚 = 𝑁 (𝑁 is size of database)

𝒃𝐓 = 𝒔T𝑨 + 𝒆T + Τ𝑞 𝑝 𝒘T1

All components are elements of ℤ𝑞 = ℤ232 (i.e., 32-bit integers)

Ciphertext structure in Regev

Concretely:
• Suppose plaintext space (i.e., record size) is

1 byte (element of ℤ𝑝 = ℤ28)

• Secret key is 𝒔 ∈ ℤ𝑞
𝑛

• Ciphertext (encrypting 𝒘) is
𝒃T = 𝒔T𝑨 + 𝒆T + Τ𝑞 𝑝 𝒘T

 where 𝒆T is small error vector
• To decrypt, compute

𝒃T − 𝒔T𝑨 = 𝒆T + Τ𝑞 𝑝 𝒘T

 and round

Building block: Regev’s linearly homomorphic encryption from LWE [Reg05]

SimplePIR: Lightweight PIR from LWE
[HHCMV23]

𝑨𝑛 = 1024

𝑚 = 𝑁 (𝑁 is size of database)

𝒃𝐓 = 𝒔T𝑨 + 𝒆T + Τ𝑞 𝑝 𝒘T1

All components are elements of ℤ𝑞 = ℤ232 (i.e., 32-bit integers)

Database 𝑫 ∈ ℤ𝑝
𝑚×𝑚

Building block: Regev’s linearly homomorphic encryption from LWE [Reg05]

SimplePIR: Lightweight PIR from LWE
[HHCMV23]

𝑨𝑫𝑛 = 1024

𝑚 = 𝑁 (𝑁 is size of database)

𝒃𝐓𝑫 = 𝒔T𝑨𝑫 + 𝒆T𝑫 + Τ𝑞 𝑝 𝒘T𝑫1

All components are elements of ℤ𝑞 = ℤ232 (i.e., 32-bit integers)

Decryption:
𝒃T𝑫 − 𝒔T𝑨𝑫 ≈ Τ𝑞 𝑝 𝒘T𝑫

Suppose 𝒘 is an indicator vector
(i.e., 𝑤𝑗 = 1 and 𝑤𝑖 = 0 if 𝑖 ≠ 𝑗)

Then 𝒘T𝑫 is 𝑗th row of 𝑫

Building block: Regev’s linearly homomorphic encryption from LWE [Reg05]

SimplePIR: Lightweight PIR from LWE
[HHCMV23]

𝑨

𝒃𝐓 = 𝒔T𝑨 + 𝒆T + Τ𝑞 𝑝 𝒘T

𝑨𝑫

𝒃𝐓𝑫

Database

𝑫 ∈ ℤ𝑝
𝑁× 𝑁

Query size:

 (𝑛 + 1) 𝑁 elements over ℤ𝑞

Server computation:
 2(𝑛 + 1)𝑁 operations over ℤ𝑞

Response size:

𝑛 + 1 𝑁 elements over ℤ𝑞

2000 operations per byte of database!

To recover record in row 𝑗: 𝑞 = 232, 𝑝 = 28, 𝑛 = 210

SimplePIR: Lightweight PIR from LWE
[HHCMV23]

Key insight in SimplePIR: 𝑨 is query-independent so move computation of 𝑨𝑫 offline

𝑨

𝒃𝐓 = 𝒔T𝑨 + 𝒆T + Τ𝑞 𝑝 𝒘T

𝑨𝑫

𝒃𝐓𝑫

Database

𝑫 ∈ ℤ𝑝
𝑁× 𝑁

Query size:

 (𝑛 + 1) 𝑁 elements over ℤ𝑞

Server computation:
 2(𝑛 + 1)𝑁 operations over ℤ𝑞

Response size:

𝑛 + 1 𝑁 elements over ℤ𝑞

2000 operations per byte of database!

SimplePIR: Lightweight PIR from LWE
[HHCMV23]

Key insight in SimplePIR: 𝑨 is query-independent so move computation of 𝑨𝑫 offline

𝒃𝐓 = 𝒔T𝑨 + 𝒆T + Τ𝑞 𝑝 𝒘T

𝑨𝑫

𝒃𝐓𝑫

Database

𝑫 ∈ ℤ𝑝
𝑁× 𝑁

Server computation:
 2𝑁 operations over ℤ𝑞Query and response size:

𝑁 elements over ℤ𝑞 2 operations per byte of database!

offline phase

online phase

SimplePIR: Lightweight PIR from LWE
[HHCMV23]

Key insight in SimplePIR: 𝑨 is query-independent so move computation of 𝑨𝑫 offline

𝒃𝐓 = 𝒔T𝑨 + 𝒆T + Τ𝑞 𝑝 𝒘T

𝑨𝑫

𝒃𝐓𝑫

Database

𝑫 ∈ ℤ𝑝
𝑁× 𝑁

Server computation:
 2𝑁 operations over ℤ𝑞Query and response size:

𝑁 elements over ℤ𝑞 2 operations per byte of database!

offline phase

online phase

On modern processors, can
process query at memory

bandwidth (best possible if
protocol performs linear-scan)

Limitation: hint is large (𝑛 ×
larger than response) and needs

to be updated whenever
database changes

PIR with Silent Preprocessing

Silent preprocessing: allow offline preprocessing, but no communication

No need to manage hints; better suited for dynamic databases

Approach: compress the hint and include as part of the response [HintlessPIR; LMRS24] [YPIR; MW24]

Why is the SimplePIR hint so large?

hint: 𝑨𝑫𝑛 = 1024

𝑚 = 𝑁 (𝑁 is size of database)

response: 𝒃𝐓𝑫

𝑗th column of hint is the “randomness” for the

ciphertext that encrypts the 𝑗th record

DoublePIR: use PIR to retrieve column 𝑗 of hint; this still
needs a hint for the (smaller) database 𝑨𝑫

Hint is large because Regev encryption has poor rate:
encrypting one ℤ𝑝 element requires 𝑛 + 1 ℤ𝑞 elements

SimplePIR using Polynomial Rings

Common technique to get better rate: use polynomial rings

Plaintext space: ℤ𝑝 𝑅𝑝 = Τℤ𝑝 𝑥 𝑥𝑑 + 1

degree-𝑑 polynomials with coefficients in ℤ𝑝Ciphertext space:

ℤ𝑞
𝑛+1

𝑅𝑞
2 = Τℤ𝑞 𝑥 𝑥𝑑 + 1

2

rate =
size of plaintext

size of ciphertext
=

log 𝑝

𝑛 + 1 log 𝑞

log 𝑝

2 log 𝑞

Recall 𝑛 = 210 = 1024, so using rings gives over 500× reduction in size

rings allow packing more data into each ciphertext

security relies on ring learning with errors (RLWE)

SimplePIR using Polynomial Rings

Common technique to get better rate: use polynomial rings

Plaintext space: ℤ𝑝 𝑅𝑝 = Τℤ𝑝 𝑥 𝑥𝑑 + 1

degree-𝑑 polynomials with coefficients in ℤ𝑝Ciphertext space:

ℤ𝑞
𝑛+1

𝑅𝑞
2 = Τℤ𝑞 𝑥 𝑥𝑑 + 1

2

rate =
size of plaintext

size of ciphertext
=

log 𝑝

𝑛 + 1 log 𝑞

log 𝑝

2 log 𝑞

Recall 𝑛 = 210 = 1024, so using rings gives over 500× reduction in size

rings allow packing more data into each ciphertext

security relies on ring learning with errors (RLWE)

SimplePIR over polynomial rings incurs
≈ log 𝑞/log 𝑝 ≈ 4 overhead (due to blow-up in

size of database representation)

YPIR: Lightweight Hint Compression
[MW24]

YPIR approach: pack LWE ciphertexts into an RLWE ciphertext

Each column is an LWE
ciphertext encrypting a

record 𝑧𝑖 ∈ ℤ𝑝

Limitation: LWE
ciphertext has poor rate

Observation: when 𝑨 is a structured matrix then each column
is also an RLWE ciphertext that encrypts a polynomial whose
constant coefficient is 𝑧𝑖

For example, 𝑖th column might decrypt to the polynomial
𝑧𝑖 + 𝑟1𝑥 + 𝑟2𝑥2 + ⋯ + 𝑟𝑛−1𝑥𝑛−1

where 𝑟1, … , 𝑟𝑛−1 are (arbitrary) coefficients and 𝑛 = 1024

Observation [CDKS21]: When 𝑛 = 2𝑑, there is a simple
homomorphic procedure that maps encryption of polynomial
𝑓 to an encryption of 𝑓 0

YPIR: Lightweight Hint Compression
[MW24]

YPIR approach: replace nested encryption with an LWE-to-RLWE packing technique

𝑓1(𝑥) 𝑓𝑚 𝑥

𝑓1 0 = 𝑧1 𝑓𝑚 0 = 𝑧𝑚

Step 1: Homomorphically extract
constant term

Each column now encrypts a
constant polynomial (equal to

the record)

Step 2: Homomorphically evaluate

the linear function σ𝑖∈ 𝑛 𝑧𝑖𝑥𝑖−1 on

blocks of 𝑛 columns

𝑧1

(Encrypted message)

𝑧𝑚𝑧2 𝑧3 ⋯
෍

𝑖∈ 𝑛

𝑧𝑖𝑥𝑖−1 ෍

𝑖∈ 𝑛

𝑧𝑖+𝑛𝑥𝑖−1

YPIR: Lightweight Hint Compression
[MW24]

YPIR approach: replace nested encryption with an LWE-to-RLWE packing technique

𝑓1(𝑥) 𝑓𝑚 𝑥

𝑓1 0 = 𝑧1 𝑓𝑚 0 = 𝑧𝑚

Step 1: Homomorphically extract
constant term

Step 2: Homomorphically evaluate

the linear function σ𝑖∈ 𝑛 𝑧𝑖𝑥𝑖−1 on

blocks of 𝑛 columns

(Encrypted message)

෍

𝑖∈ 𝑛

𝑧𝑖𝑥𝑖−1 ෍

𝑖∈ 𝑛

𝑧𝑖+𝑛𝑥𝑖−1

SimplePIR response size:
𝑛 + 1 𝑚 elements of ℤ𝑞

Packed RLWE response size:
𝑚

𝑛
⋅ 2𝑛 = 2𝑚 elements of ℤ𝑞

Recall: 𝑛 ≥ 210, so substantial
reduction in practice

Increases server compute, but
observe that packing is applied to

the SimplePIR response, which

has size 𝑂𝜆 𝑁

YPIR: Lightweight Hint Compression
[MW24]

YPIR approach: replace nested encryption with an LWE-to-RLWE packing technique

Step 2: Homomorphically evaluate

the linear function σ𝑖∈ 𝑛 𝑧𝑖𝑥𝑖−1 on

blocks of 𝑛 columns

෍

𝑖∈ 𝑛

𝑧𝑖𝑥𝑖−1 ෍

𝑖∈ 𝑛

𝑧𝑖+𝑛𝑥𝑖−1

SimplePIR response size:
𝑛 + 1 𝑚 elements of ℤ𝑞

Packed RLWE response size:
𝑚

𝑛
⋅ 2𝑛 = 2𝑚 elements of ℤ𝑞

Recall: 𝑛 ≥ 210, so substantial
reduction in practice

Increases server compute, but
observe that packing is applied to

the SimplePIR response, which

has size 𝑂𝜆 𝑁

If we apply packing to
DoublePIR (SimplePIR with 1

recursive step), then packing is
applied to 𝑂𝜆 1 size response

YPIR: Lightweight Hint Compression
[MW24]

𝒃𝐓 = 𝒔T𝑨 + 𝒆T + Τ𝑞 𝑝 𝒘T

Database

𝑫 ∈ ℤ𝑝
𝑁× 𝑁

offline phase

online phase

𝑨𝑫

Compute:

No communication!

packing keys (key-switching)

packed response

PIR for Certificate Transparency Auditing

Setup: 5 billion SCTs, encoded as Bloom filter with 236 bits (8 GB)

SCT audit consists of a single PIR query

DoublePIR HintlessPIR YPIR

Download

Upload

Download

Throughput

O
ff

lin
e

O
n

lin
e

14 MB – –

960 KB

12 KB

12.5 GB/s

1.4 MB

1.7 MB

4.9 GB/s

1.5 MB

12 KB

11.6 GB/s

[HHCMV23] uses DoublePIR

1.6× larger queries and 93% of the throughput of fastest scheme

PIR for Certificate Transparency Auditing

Setup: 5 billion SCTs, encoded as Bloom filter with 236 bits (8 GB)

SCT audit consists of a single PIR query

Communication

Computation

TotalSe
rv

er
 C

o
st

s

Assuming each client performs 20 SCT audits each week (based on client making 104 TLS connections and
auditing Τ1 500 fraction of connections) – achieves detection rate of Τ1 1000 (Chrome’s current approach)

DoublePIR

$1.25

$0.19

$1.44

WeeklySCT Update Frequency

HintlessPIR

$3.22

$0.49

$3.71

Daily

YPIR

$0.02

$0.21

$0.23

Daily

DoublePIR

$8.63

$0.25

$8.88

Daily

Weekly server costs based on AWS cost model (free inbound communication) to support 1000 clients:

84%
cheaper!

PIR for Certificate Transparency Auditing

Setup: 5 billion SCTs, encoded as Bloom filter with 236 bits (8 GB)

SCT audit consists of a single PIR query

Communication

Computation

TotalSe
rv

er
 C

o
st

s

Assuming each client performs 20 SCT audits each week (based on client making 104 TLS connections and
auditing Τ1 500 fraction of connections) – achieves detection rate of Τ1 1000 (Chrome’s current approach)

DoublePIR

$1.25

$0.19

$1.44

WeeklySCT Update Frequency

HintlessPIR

$3.22

$0.49

$3.71

Daily

YPIR

$0.02

$0.21

$0.23

Daily

DoublePIR

$8.63

$0.25

$8.88

Daily

Weekly server costs based on AWS cost model (free inbound communication) to support 1000 clients:

84%
cheaper!

𝑘-anonymity (Chrome): 2.3 MB total
communication per client per week

YPIR: 29 MB total communication per client
per week (12.6× higher)

PIR Throughput

Memory Bandwidth

Large databases: linear scan
dominates over packing costs

Retrieving Larger Records

Application: Password breach monitoring
Consider database with SHA-256 hashes of 250 million compromised passwords

Database size is 8 GB, partition into 250,000 records of size 32 KB

Technically, this is keyword PIR, but can be reduced to PIR via hashing

SimplePIR HintlessPIR YPIR

Download

Upload

Download

Throughput

O
ff

lin
e

O
n

lin
e

362 MB – –

362 KB

362 KB

11 GB/s

1.4 MB

1.7 MB

5 GB/s

1.3 MB

228 KB

5 GB/s

Extra computational overhead from packing transformation

Recent Improvements (for Private SCT Auditing)

Distributional PIR [LHC25]: Better performance if we have prior information on query
distribution (e.g., private SCT auditing)

• Distributional PIR + YPIR for private SCT auditing: reduces computational costs by 12×
and communication by 3×

• Cryptographic privacy at 4× communication cost over Chrome’s 𝑘-anonymity-based
approach

System architecture for private SCT auditing [HPW25]: Consider better data structures and
system architecture to support private SCT auditing – “seem to bring wide SCT auditing to
the brink of practicality”

Existing single-server PIR protocols are fast enough to
support some privacy-preserving applications at scale

Recent progress: Apple’s use of PIR for private caller ID lookup and private image search

Recent Developments in PIR

The bottleneck for linear-scan-based PIR is the memory bandwidth, and recent schemes
essentially hit this limit – will not cut it when database is 100 GB or 1 TB or even larger

Piano [ZPSZ23], QuarterPIR [GZS24], [RMS24], Plinko [HPPY25], [WR25]

Sublinear server computational costs (can scale better to databases that are >100 GB)

Preprocessing phase requires streaming the entire database (and client storing some state)

Can avoid streaming the database in the two-server model (but rely on non-collusion
assumption)

Doubly-Efficient PIR

• Server performs one-time encoding of the database
• In online phase, server can then answer queries by reading polylog 𝑁 bits of the

encoded value (no client-specific state needed)

Implication: private data access is essentially free (in an asymptotic sense)

[CHR17, BIPW17, LMW23]

Computation:

Communication:

Without privacy: log 𝑁 bits

With privacy: log 𝑁 + ෨𝑂 𝜆 bits (where 𝜆 is a security parameter) [BV11]

Without privacy: 1 probe

With privacy: poly 𝜆, log 𝑁 probes [LMW23]

Doubly-Efficient PIR

• Server performs one-time encoding of the database
• In online phase, server can then answer queries by reading polylog 𝑁 bits of the

encoded value (no client-specific state needed)

Implication: private data access is essentially free (in an asymptotic sense)

[CHR17, BIPW17, LMW23]

Computation:

Communication:

Without privacy: log 𝑁 bits

With privacy: log 𝑁 + ෨𝑂 𝜆 bits (where 𝜆 is a security parameter) [BV11]

Without privacy: 1 probe

With privacy: poly 𝜆, log 𝑁 probes [LMW23]

Limitation: Still far from practical

For 350 MB database [OPPW24]:
• Size of server encoding is 412 PB (259 bytes)
• Encoding time: > 8 million core-years (> $4 billion)
• Communication: 573 MB (larger than database)
• Computation: 4.3 core-weeks ($39/query)

Open problem: Practical doubly-efficient PIR (interesting even in multi-server setting)

Open Problems

Thank you!

Reduce concrete communication costs of PIR with silent preprocessing

Current approaches all have 𝑂 𝑁 communication – can we get to polylog 𝑁 with

similar (concrete) computational overhead

Practical doubly-efficient PIR (single-server or multi-server)

What will it take to deploy PIR in practical systems?

Recent progress: Apple’s use of PIR for private caller ID lookup and private image search

	Slide 1: Private Information Retrieval: Opportunities and Challenges
	Slide 2: Private Information Retrieval (PIR)
	Slide 4: Private Information Retrieval (PIR)
	Slide 5: Application to Certificate Transparency
	Slide 6: Application to Certificate Transparency
	Slide 7: PIR for Certificate Transparency
	Slide 8: How Efficient is PIR?
	Slide 9: 25 Years of PIR Research
	Slide 11: 25 Years of PIR Research
	Slide 12: 25 Years of PIR Research
	Slide 18: 25 Years of PIR Research
	Slide 19: PIR from Homomorphic Encryption
	Slide 20: PIR from Homomorphic Encryption
	Slide 21: PIR from Homomorphic Encryption
	Slide 22: PIR from Homomorphic Encryption
	Slide 25: SimplePIR: Lightweight PIR from LWE
	Slide 26: SimplePIR: Lightweight PIR from LWE
	Slide 27: SimplePIR: Lightweight PIR from LWE
	Slide 28: SimplePIR: Lightweight PIR from LWE
	Slide 29: SimplePIR: Lightweight PIR from LWE
	Slide 30: SimplePIR: Lightweight PIR from LWE
	Slide 31: SimplePIR: Lightweight PIR from LWE
	Slide 32: SimplePIR: Lightweight PIR from LWE
	Slide 33: SimplePIR: Lightweight PIR from LWE
	Slide 34: PIR with Silent Preprocessing
	Slide 35: SimplePIR using Polynomial Rings
	Slide 36: SimplePIR using Polynomial Rings
	Slide 39: YPIR: Lightweight Hint Compression
	Slide 40: YPIR: Lightweight Hint Compression
	Slide 41: YPIR: Lightweight Hint Compression
	Slide 42: YPIR: Lightweight Hint Compression
	Slide 43: YPIR: Lightweight Hint Compression
	Slide 45: PIR for Certificate Transparency Auditing
	Slide 46: PIR for Certificate Transparency Auditing
	Slide 47: PIR for Certificate Transparency Auditing
	Slide 50: PIR Throughput
	Slide 53: Retrieving Larger Records
	Slide 54: Recent Improvements (for Private SCT Auditing)
	Slide 55: Recent Developments in PIR
	Slide 56: Doubly-Efficient PIR
	Slide 57: Doubly-Efficient PIR
	Slide 59: Open Problems

