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Private Information Retrieval (PIR)
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Private Information Retrieval (PIR)
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* Metadata-private messaging ¢! Contact discovery ~~ Private contact tracing
=] Certificate transparency auditing & Private web search @) Private DNS

(%] Private content delivery ) Private navigation Password breach checking



Certificate Transparency
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Certificate Transparency

[LLK13, Laul4]

A valid SCT means that the certificate was deposited into a log server

But is the log server honest? Clients will periodically audit log server to check that SCT is actually present

Privacy concern: clients reveal

@ browsing habits to the log server
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PIR for Certificate Transparency Auditing

[LG15, KOR19, HHCMV?23]

Google Chrome’s approach (opt-out SCT auditing): reveal a =20-bit hash of the SCT to the log server
Log server replies with all websites with the particular hash (= 1000 websites)

Scheme provides k-anonymity notion of privacy (client visited one of 1000 possible websites)

Can we do better?

View this problem as a private information retrieval (PIR) problem
Option 1: Hash SCTs into buckets; client uses PIR to privately retrieve all SCTs in the target bucket

Option 2: Use a Bloom filter to represent the set of SCTs and use PIR to retrieve relevant bit(s) of the
Bloom filter

Advantage: Provides cryptographic privacy: server learns nothing about client’s browsing habits

But is PIR actually practical?



Efficiency of PIR
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Abstract

We explore the limits of single-server computational pri-
vate information retrieval (PIR) for the purpose of preserv-
ing client access patterns leakage. We show that deployment
of non-trivial single server PIR protocols on real hardware
of the recent past would have been orders of magnitude less
time-efficient than trivially transferring the entire database.
We stress that these results are beyond existing knowledge
of mere “impracticality” under unfavorable assumptions.
They rather reflect an inherent limitation with respect to
modern hardware, likely the result of a communication-cost
centric protocol design. We argue that this is likely to hold
on non-specialized traditional hardware in the foreseeable
Sfuture. We validate our reasoning in an experimental setup
on modern off-the-shelf hardware. Ultimately, we hope our
results will stimulate practical designs.
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Here we discuss single-server computational PIR for the
purpose of preserving client access patterns leakage. We
show that deployment of non-trivial single server private
information retrieval protocols on real hardware of the re-
cent past would have been orders of magnitude more time-
consuming than trivially transferring the entire database.
The deployment of computational PIR would in fact in-
crease overall execution time, as well as the probability of

Jforward leakage, when the deployed present trapdoors be-

come eventually vulnerable — e.g., today’s queries will be
revealed once factoring of today’s values will become pos-
sible in the future.

We stress that this is beyond existing knowledge of mere
“impracticality” under unfavorable assumptions. On real
hardware, no existing non-trivial single server PIR protocol
could have possibly had outperformed the trivial client-to-
server transfer of records in the past, and is likely not to do
so in the future either. This is due to the fact that on any

NDSS 2007

Take-away (2007): PIR schemes are
too expensive and better to just
have client download the database;
need new constructions

Recurring theme in cryptography:
powerful tools, but often
(concretely) expensive
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25 Years of PIR Research
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25 Years of PIR Research
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PIR for Certificate Transparency

Assuming a client makes 10* TLS connections each week and performs 20 audits each
week (same assumptions described in Chrome’s approach)

Assume certificate transparency log server contains 5 billion SCTs

Using YPIR: 29 MB of communication per client, 13.7 core-seconds of computation
(Estimated AWS costs: $228/million clients/week)

Chrome’s k-anonymity approach: 2.3 MB of communication per client

Bottom line: 12.6 X communication overhead to achieve cryptographic privacy
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25 Years of PIR Research
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The Next 5 Years of PIR Research

Two classes of constructions:
* High throughput schemes: ~ memory bandwidth throughput, need to
communicate a few MB to retrieve a bit/byte of payload
* High rate schemes: communication overhead is small (< 2X over direct retrieval),
but throughput is limited (300-400 MB/s)
Can we combine ideas to get the best of both worlds?

Can we build concretely-efficient PIR with sublinear server computation (without having
the client first stream the database)?

Can we leverage techniques from efficient PIR schemes to other domains (e.g., private set
intersection, privacy-preserving machine learning)?

What will it take for companies to use PIR to better safeguard user privacy?
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