Traceable PRFs:

Full Collusion Resistance and Active Security

Sarasij Maitra and David Wu

Traceable Cryptography

Program P
Distributor can give out

copies of a program P
Each copy marked

with an identifier

Goal: cannot create a new copy that does not contain the identifier
Useful for protecting against unauthorized distribution of software

Traceable PRFs

[GKWW21]
p PRF(k,-)
. /on input x: Program impleme.nts a
J output PRF(k, x) pseudorandom function (PRF)
k Marking algorithm embeds a mark
Mar (i.e., an identifier into the program)
PRF(k,")
/ Conceptually similar to
ij on input x: watermarking, but provides much
output PRF(k, x) stronger security guarantees
QPKC

Traceable PRFs
[GKWW21]

PRF(k,")
Z
- /on input x:
J output PRF(k, x) o PKC
l Mark ' Trace
PRF(k,) Marking security (informal):
/ if program C can distinquish

on input x:
‘”:_j output PRF(k, %) PRF(k,-) from random, then mark

@ PKC should be preserved

Traceable PRFs

PRF(k,)

A

. on input x:
J output PRF(k, x)

A

on input x:
-

J output PRF(k, x)
QPKC

[GKWW21]

Primitive suffices for realizing
primitives like traitor tracing (since
PRF implies encryption)

Marking security (informal):
if program C can distinquish

PRF(k,-) from random, then mark
should be preserved

Existing Constructions of Traceable PRFs

[GKWW21]

Assuming LWE, there exists a single-key traceable PRF (with secret tracing)

e Security holds only if adversary sees a single marked program

 Completely broken if adversary sees even two marked programs

Assuming indistinguishability obfuscation and injective one-way functions,
there exists a fully collusion resistant traceable PRF (with public tracing)

Can we construct collusion-resistant traceable PRFs from LWE?

This Work

A generic approach to upgrade single-key traceable PRF into a
fully collusion resistant traceable PRF via fingerprinting codes

Information-theoretic primitive

Corollary. Assuming LWE, there exists a fully collusion resistant traceable
PRF (with secret tracing)

Caveat: scheme only supports polynomial identity space

Fingerprinting Codes
[BS95, Tar03]

Codewords

1 [1fojofoj1j1jofofO
2 |1jof1jof1]ajof1]1
3

Fingerprinting Codes

[BS95, Tar03]

Codewords
1 |[1|ojojoj1f1]ojofO
3
] Mool

the codewords it was given

Adversary can craft a codeword where every position is
consistent with at least one of the codewords it has

Construction Overview

Let € be the length of the fingerprinting code

Traceable PRF consists of £ copies of the single-key traceable PRF:

PRF((ks, ., k), ¥) = () PRF(k;,)
i€[£]

Marking:
Mark(kq, wy)
Encode Mark k2, w3) it key will be marked
id ‘ w E {0,1}{) . with i™ bit of codeword

Mark(k,, wy)

Construction Overview

1 [1]0]0]0f1]1]0]0JOf single-keysecurit
f int of
3 fingerprinting code mode
Observation: For positions where all codewords agree,

adversary only sees 1 marked key Security reduces to that
of fingerprinting code

Marking:
Mark(kq, wy)
Encode Mark k2, w3) it key will be marked
id ‘ w E {0,1}{) . with i™ bit of codeword

Mark(k,, wy)

Summary

A generic approach to upgrade single-key traceable PRF into a
fully collusion resistant traceable PRF via fingerprinting codes

Corollary. Assuming LWE, there exists a fully collusion resistant traceable
PRF (with secret tracing)

Also: approach also useful to achieve active security (where adversary has
access to tracing oracle) [see paper for details]

Open Question: collusion resistance for super-polynomial identity space from LWE

Thank you!
https://eprint.iacr.org/2021/1675.pdf

