
Traceable PRFs:
Full Collusion Resistance and Active Security

Sarasij Maitra and David Wu



Traceable Cryptography

Program 𝑃

𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 𝑃6

Distributor can give out 
copies of a program 𝑃

Goal: cannot create a new copy that does not contain the identifier

Each copy marked
with an identifier

Useful for protecting against unauthorized distribution of software



Traceable PRFs

on input 𝑥:
output PRF 𝑘, 𝑥

PRF(𝑘,⋅)

[GKWW21]

Program implements a 
pseudorandom function (PRF)

on input 𝑥:
output PRF 𝑘, 𝑥

PRF(𝑘,⋅)

PKC

Mark
Marking algorithm embeds a mark 
(i.e., an identifier into the program)

Conceptually similar to 
watermarking, but provides much 

stronger security guarantees



Traceable PRFs

on input 𝑥:
output PRF 𝑘, 𝑥

PRF(𝑘,⋅)

[GKWW21]

on input 𝑥:
output PRF 𝑘, 𝑥

PRF(𝑘,⋅)

PKC

Mark

Marking security (informal):
if program 𝐶 can distinguish

PRF 𝑘,⋅ from random, then mark 
should be preserved

Trace

PKC



Traceable PRFs

on input 𝑥:
output PRF 𝑘, 𝑥

PRF(𝑘,⋅)

[GKWW21]

on input 𝑥:
output PRF 𝑘, 𝑥

PRF(𝑘,⋅)

PKC

Mark

Marking security (informal):
if program 𝐶 can distinguish

PRF 𝑘,⋅ from random, then mark 
should be preserved

Primitive suffices for realizing 
primitives like traitor tracing (since 

PRF implies encryption)



Existing Constructions of Traceable PRFs
[GKWW21]

Assuming indistinguishability obfuscation and injective one-way functions, 
there exists a fully collusion resistant traceable PRF (with public tracing)

Assuming LWE, there exists a single-key traceable PRF (with secret tracing)

• Security holds only if adversary sees a single marked program
• Completely broken if adversary sees even two marked programs

Can we construct collusion-resistant traceable PRFs from LWE?



This Work

A generic approach to upgrade single-key traceable PRF into a 
fully collusion resistant traceable PRF via fingerprinting codes

Information-theoretic primitive

Corollary. Assuming LWE, there exists a fully collusion resistant traceable 
PRF (with secret tracing)

Caveat: scheme only supports polynomial identity space 



Fingerprinting Codes
[BS95, Tar03]

1 1 1 1 1 1 1 1 1

1 0 1 0 1 1 0 1 1

1 0 0 0 1 1 0 0 0

3

2

1

Codewords



Fingerprinting Codes
[BS95, Tar03]

1 1 1 1 1 1 1 1 1

1 0 1 0 1 1 0 1 1

1 0 0 0 1 1 0 0 0

3

2

1

Codewords

1 ? ? ? 1 1 ? ? ?

Adversary can craft a codeword where every position is 
consistent with at least one of the codewords it has

Security: adversary’s 
codeword decodes to one of 
the codewords it was given



Construction Overview

Let ℓ be the length of the fingerprinting code

Traceable PRF consists of ℓ copies of the single-key traceable PRF:

PRF 𝑘1, … , 𝑘ℓ , 𝑥 =ໄ

𝑖∈ ℓ

PRF 𝑘𝑖 , 𝑥

id

Marking:

𝑤 ∈ 0,1 ℓ

Encode

Mark(𝑘1, 𝑤1)

Mark(𝑘2, 𝑤2)

Mark(𝑘ℓ, 𝑤ℓ)

⋮
𝑖th key will be marked 

with 𝑖th bit of codeword



Construction Overview

id

Marking:

𝑤 ∈ 0,1 ℓ

Encode

Mark(𝑘1, 𝑤1)

Mark(𝑘2, 𝑤2)

Mark(𝑘ℓ, 𝑤ℓ)

⋮
𝑖th key will be marked 

with 𝑖th bit of codeword

1 1 1 1 1 1 1 1 1

1 0 0 0 1 1 0 0 0

3

1

Observation: For positions where all codewords agree, 
adversary only sees 1 marked key

Single-key security 
enforces constraint of 

fingerprinting code model

Security reduces to that 
of fingerprinting code



Summary

A generic approach to upgrade single-key traceable PRF into a 
fully collusion resistant traceable PRF via fingerprinting codes

Corollary. Assuming LWE, there exists a fully collusion resistant traceable 
PRF (with secret tracing)

Also: approach also useful to achieve active security (where adversary has 
access to tracing oracle) [see paper for details]

Open Question: collusion resistance for super-polynomial identity space from LWE

https://eprint.iacr.org/2021/1675.pdf

Thank you!


