Succinct Functional Commitments

for Circuits from k-Lin

Hoeteck Wee and David Wu
May 2024

Functional Commitments

“commitment”

9

“opening”

’ JIA
Open + Verify ﬁ m
0| IEEE—

Functional Commitments

/'\

Q Commit “commitment”
) .0

Commit(crs, x) — (o, st)

Takes a common reference string and commits to an input x

Outputs commitment o and commitment state st

Functional Commitments

Open + Verity

0| TEE——)

Commit(crs, x) — (o, st)
Open(st, /) » m

Takes the commitment state and a function f and outputs an opening

Verify(crs,o, (f,v),m) - 0/1

Checks whether m is valid opening of g to value y with respect to [

Functional Commitments

o

Open + Verity

Binding: efficient adversary cannot open o to two different values
with respect to the same f

. £

o

T[O/ m Verify(crs, o, (f,y),mp) = 1

T4 Verify(crs, o, (f,y1),m1) =1

Functional Commitments

Open + Verity

a E——)

Succinctness: commitments and openings should be short
 Short commitment: |o| = poly(4, log |x|)
* Short opening: || = poly(4, log|x|)

Special Cases of Functional Commitments

Vector commitments:

| ind; (xq, ..., X)) = Xx;

commit to a vector, open at an index

Polynomial commitments:

fo(ag, ..,ag) = ag + ayx + -+ ayzx?
——— [E5

commit to a polynomial, open to the evaluation at x

Commitments as Proofs on Committed Data

Commit(crs, data)

o

—

m, f (data)
————-

m is a proof that the data satisfies some property
(e.g., committed input is in a certain range)

Succinctness: both the commitment and the proof are short

Succinct Functional Commitments

(not an exhaustive list!)

Scheme Function Class Assumption

[Mer87] vector commitment collision-resistant hash functions
[LY10, CF13, LM19, GRWZ20] vector commitment q-type pairing assumptions

[CF13, LM19, BBF19] vector commitment groups of unknown order

[PPS21] vector commitment short integer solutions (SIS)

[KZG10, Lee20] polynomial commitment q-type pairing assumptions

[BFS19, BHRRS21, BF23] polynomial commitment groups of unknown order

[CLM23, FLV23] polynomial commitment k-R-ISIS assumption (lattices)

[LRY16] linear functions q-type pairing assumptions
[ACLMT22, CLM23] constant-degree polynomials k-R-ISIS assumption (lattices)

[LRY16] Boolean circuits collision-resistant hash functions + SNARKs
[dCP23] Boolean circuits SIS (non-succinct openings in general)
[KLVW23] Boolean circuits batch arguments for NP

[BCFL23] Boolean circuits twin k-R-ISIS (lattice) / HIKER (pairing)

[WW23a, WW23b] Boolean circuits £-succinct SIS

Pairing-Based Functional Commitments

This work: functional commitments for general circuits using pairings

Why bilinear maps? Schemes have the best succinctness
* Pairing-based SNARKs just have a constant number of group elements

Can we construct a functional commitment for general circuits where the size of the
commitment and the opening contain a constant number of group elements?

Namely: match the succinctness of pairing-based SNARKs, but only using standard pairing-
based assumption (no knowledge assumptions or ideal models)

Pairing-Based Functional Commitments

This work: functional commitments for general circuits using pairings

Scheme Function Class |crs| |o] || Assumption

[LRY16, Gro16] arithmetic circuits 0(s) 0(1) 0(1) generic group

[LRY16] linear functions 0(?) 0(1) 0(m) subgroup decision

[LM19] linear functions 0(fm) 0(1) 0(1) generic group

[LP20] p-sparse polynomials 0(u) 0O(m) 0(1) Uber assumption

[CFT22] degree-d polynomials O(Kdm) 0(d) 0(d) £4-Diffie-Hellman exponent
[BCFL23] arithmetic circuits 0(s®) 0(1) 0(d) hinted kernel (g-type)
[KLVW?23] arithmetic circuits poly (1) 0(1) poly(4) k-Lin

This work arithmetic circuits O(s®) 0(1) 0o(1) bilateral k-Lin

£ = input length, m = output length, s = circuit size

metrics in # group elements

This Work

This work: functional commitments for general circuits using pairings

Scheme Function Class |crs| |o] || Assumption

This work arithmetic circuits 0(s®) 0(1) 0(1) bilateral k-Lin

First pairing-based construction for general circuits based on falsifiable assumptions
where commitment and openings contain constant number of group elements

* Previously: needed SNARKs (non-falsifiable assumptions)
First scheme that only makes black-box use of cryptographic primitives/algorithms where

the commitment + opening size is poly(4) bits
* Previously: need non-black-box techniques (e.g., SNARKs or BARGs for NP)

This Work

This work: functional commitments for general circuits using pairings

Scheme Function Class |crs| |o] || Assumption

This work arithmetic circuits 0(s®) 0(1) 0(1) bilateral k-Lin

Constant number
Additional implications (for free!): of group elements

* SNARG for P/poly with a universal setup with constant-size proofs (CRS only depends on
the size of the circuit)
* Previously (from pairings): SNARG for P/poly with circuit-dependent CRS [Gz21]
« Homomorphic signature for general (bounded-size) circuits with constant-size signatures
* Previously (from pairings): Signature size scaled with the depth of the circuit [BcFL23]

(all results without relying on knowledge assumptions or ideal models)

Starting Point: Chainable Commitment

Chainable commitment [BcFL23] Instead of committing to x

Let f: ZE — Z% be a vector-valued function and opening to y = f(x)

X1 V1 l

Can think of commitment Open to commitment to
as a subset product: X Y2 y = f(x)

Chain binding: cannot

where h; are in the CRS X vy UDEM @iy U 1T dlStlf)Ct
— L 1 | commitments 04yt Ogut

succinct commitment to _ . succinct commitment to
succinct opening

vector x vector y = f(x)
o, I o,

Starting Point: Chainable Commitment

Chainable commitment for quadratic functions = functional commitment for circuits

[BCFL23]
Assume: each gate gate
computes quadratic u
function gate
gate gate
gate
gate Commitments to internal
B layers and output layer
Commit to . 7 > >
input wires o 01 %) O3

4 /'\7-[2/'\ 7T3/‘

opening

Chainable commitment openings for each layer

Starting Point: Chainable Commitment

Chainable commitment for quadratic functions = functional commitment for circuits

Commitment: o
. ro /
Openlng: (0-1) 02,03,7T01,TT;, T[S)

Opening scales with
depth of circuit

Commit to
input wires

[BCFL23]

gate

gate

gate
gate

gate
gate

Commitments to internal
layers and output layer

01

Tl'-l /‘\T[Z/\ 77'-3/’

0 03

opening

Chainable commitment openings for each layer

Our Approach: Commit to All Wires

Goal: Constant number of group elements for commitment and openings

Commitment: (same as before) Verifier know output (z4, ..., Z;):

x1 xz Z1 Z2

' ‘xk ‘ g Oinput

Opening: commit to all wires (i.e., concatenated together) twice

X1 | X2 ‘ ‘xk Yi Y2 | ‘W Z1 | 22 Zt < 01
\\ J \\ J J
Y Y Y
Input layer Intermediate layer Output layer
AL A A
'4 N [N [N\
X1 | X2 ' ‘xk Yi|Yz | ‘W Z1 | 22 Zt < 0>

Our Approach: Commit to All Wires

Goal: Constant number of group elements for commitment and openings

Everything is short, but how
do we argue binding?

Our Approach: Commit to All Wires

Goal: Constant number of group elements for commitment and openings

Commitment: (same as before) Verifier know output (z4, ..., Z;):

x1 xz Z1 Zz

' ‘xk ‘ g Oinput

Opening: commit to all wires (i.e., concatenated together) twice

X1 | X2 "xk Y1 | Y2 ‘“‘3’{’ Z1 | 22 zg | = 01

Neither g; nor o, is a quadratic function of gjppy¢
With bilinear maps, we only know how to check quadratic functions

—> 0,

X1 | X2 "xk Y1 |Y2 1~ ‘W Z1 | 22 Zt

Technical Tool: Projective Chainable Commitments

Project(al,j)l Project(o,,] + 1)1
Intuitively: can associate CRS with Vanilla chain binding: given (a4, 05, ™) and (o4, 05, ")

an index j that allows projecting a
commitment g4 onto a
commitment to the first j indices

If 0, = 01 and
* (0,,m, f) is avalid opening for o,
* (0,,7m', f) isavalid opening for o]
Then, 0, = 0,

Technical Tool: Projective Chainable Commitments

Project(al,j)l Project(o,,] + 1)1
X | ‘xj ‘ 0 ‘ ‘ 0 ‘—» 0_1(]') x| ‘xj o ‘ 0 ‘—; O_(j+1)

2

Intuitively: can associate CRS with | projective chain binding: given (o4, 05,) and (o4, 05, ')

an index j that allows projecting a If Project(td, g, /) = Project(td, a;, j) and

commitment o; onto a * (0,1, f)is avalid opening for oy
commitment to the first j indices + (o, 7', f) is a valid opening for o’
21, 1

Then, Project(td, g,,j + 1) = Project(td, g;,j + 1)

Using Projective Chainable Commitments

I
|
|
|
|
]

\ opening

—————————————————————————————————————— -

Prove statements of the following form:
* Input consistency: first k wires in gy is consistent with gyt

* Gate consistency: first j + 1 wires in g, is consistent with first j wires in gy

Using Projective Chainable Commitments

This is a quadratic

relation (since we have
the intermediate wires)

am s -

Prove statements of the following form:

Input consistency: first k wires in gy is consistent with gyt
Gate consistency: first j + 1 wires in g, is consistent with first j wires in g4
Internal consistency: first j wires in g4 is consistent with first j wires in o,
Output consistency: last t wires in o7 are consistent with o,ytput

Using Projective Chainable Commitments

X1 | X2

Consider two different openings: (g1, 05, 0out, ™) and (a4, 05, Oy, T')

!
A I O A W1

Initially: no guarantees on what o4, g4, g,, 0, commit to

/
[O O I

Step 1: Input consistency between gy, and gy, g;

Projective chain binding: g;, g, are both openings for g, so Project(oy, k) = Project(ay, k)

Using Projective Chainable Commitments

X1 | X2

Consider two different openings: (g1, 05, 0out, ™) and (a4, 05, Oy, T')

o, and o agree on first k components: Note: we do not know what values
Project(oy, k) = Project(oy, k) they have, only that they agree

/
HEEEEEE | [| o0

Step 1: Input consistency between gy, and gy, g;

N\

- /
X1 | X2 01,01

Projective chain binding: g;, g, are both openings for g, so Project(oy, k) = Project(ay, k)

Using Projective Chainable Commitments

‘x1 X2 "xk‘_»a-in

Consider two different openings: (g1, 05, 0out, ™) and (a4, 05, Oy, T')

N\ N\ N\ ’
o fe [~ fa] | | | | [| oo
o, and o agree on first k components: Note: we do not know what values
Project(oy, k) = Project(oy, k) they have, only that they agree
!
07,09

Step 2: Gate consistency between first k wires in a4, 0
with first k + 1 wires in 0y, 0,

Since Project(ay, k) = Project(ay, k), projective chain binding implies Project(a,, k + 1) = Project(o,, k + 1)

Using Projective Chainable Commitments

X1 | X2

Consider two different openings: (g1, 05, 0out, ™) and (a4, 05, Oy, T')

N\ N\ N\ ’
wlol-da] | [[[[| [| ouo
g, and g, agree on first k + 1 components:
Project(o,, k + 1) = Project(a,, k + 1)
~ ~ ~ ~ /4
X1 | X2 Xk | V1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 07,09

Step 2: Gate consistency between first k wires in a4, 0
with first k + 1 wires in 0y, 0,

Since Project(ay, k) = Project(ay, k), projective chain binding implies Project(a,, k + 1) = Project(o,, k + 1)

Using Projective Chainable Commitments

X1 | X2

Consider two different openings: (g1, 05, 0out, ™) and (a4, 05, Oy, T')

N\ N\ N\ ’
wlol-da] | [[[[| [| ouo
g, and g, agree on first k + 1 components:
Project(o,, k + 1) = Project(a,, k + 1)
~ ~ ~ ~ /4
X1 | X2 Xk | V1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 07,09

Step 3: Internal consistency between first kK + 1 wires in
a,, 0, with first k + 1 wires in 0y, 0]

Since Project(a,, k + 1) = Project(o,, k + 1), projective chain binding implies Project(o;, k + 1) = Project(o;, k + 1)

Using Projective Chainable Commitments

X1 | X2

Consider two different openings: (g1, 05, 0out, ™) and (a4, 05, Oy, T')

N\ N\ N\ N\ ’
X1 | X2 Xk | V1 ‘ ‘ ‘ ‘ ‘ ‘ 01,01
o, and o agree on first k + 1 components:
Project(oy,k + 1) = Project(oq, k + 1)
~ ~ ~ ~ /4
X1 | X2 Xk | V1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 07,09

Step 3: Internal consistency between first kK + 1 wires in
a,, 0, with first k + 1 wires in 0y, 0]

Since Project(a,, k + 1) = Project(o,, k + 1), projective chain binding implies Project(o;, k + 1) = Project(o;, k + 1)

Using Projective Chainable Commitments

X1 | X2 "xk‘_»a-in

Consider two different openings: (g1, 05, 0out, ™) and (a4, 05, Oy, T')

N\ N\ N\ N\ ’
X1 | X2 Xk | V1 ‘ ‘ ‘ ‘ ‘ ‘ 01,01
o, and g, agree on first k + 1 components:
Project(oq,k + 1) = Project(oq, k + 1)
~ ~ ~ ~ /4
X1 | X2 Xk | V1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 07,09

Observe: we have established that Project(a;, k + 1) = Project(o;, k + 1)
Can iterate this strategy for each index k + 1,k + 2, ... to argue that g;, g, agree on all components

Using Projective Chainable Commitments

X1 | X2

Consider two different openings: (g1, 05, 0out, ™) and (a4, 05, Oy, T')

N

Zt

s 1o | & ~ |5 |5 /
"xk Yi | Y2 | ‘}’e Z1 | 22 01,01

~

41

~

Y2

~

Z1 Zp 0», 0'2’

| 2 |

Observe: we have established that Project(a;, k + 1) = Project(o;, k + 1)
Can iterate this strategy for each index k + 1,k + 2, ... to argue that g;, g, agree on all components

Using Projective Chainable Commitments

X1 | X2

Consider two different openings: (g1, 05, 0out, ™) and (a4, 05, Oy, T')

N

Zt

Nz |9 |52 [|90 |2 |2 01, 0]

~

41

~

Y2

~

Zq Zy 0», 0'2’

| 2 |

If 0, = o4, then final output commitment check ensures o,,t = T4yt

Similar proof strategy as [GZ21, CJJ21, KLVW23]

Constructing Projective Chainable Commitments

Starting point: Kiltz-Wee [KW15] proof system for proving membership in linear spaces

Basic scheme supports opening to a fixed linear function
Extend to any linear function using multiple copies of the scheme (for basis functions)
Extend to quadratic functions via tensoring and linearization

Projective chainable commitments: embed commitment in a vector space

Real commitment lie in one subspace, projected commitment lie in a “shadow” subspace
similar projection as [GZ19], but with additional locality constraints

Security follows from bilateral k-Lin

[see paper for details]

Summary

This work: functional commitments for general circuits using pairings

Scheme Function Class |crs| |o] || Assumption

This work arithmetic circuits 0(s®) 0(1) 0(1) bilateral k-Lin

* First pairing-based construction for general circuits based on falsifiable assumptions
where commitment and openings contain constant number of group elements
* First scheme that only makes black-box use of cryptographic primitives/algorithms where

the commitment + opening size is poly(4) bits

Open problem: Construction with shorter CRS (e.g., linear-size)? Then, parameters would
match state-of-the-art pairing-based SNARKSs.

Thank you!
https://eprint.iacr.org/2024/688

	Slide 1: Succinct Functional Commitments for Circuits from k-Lin
	Slide 2: Functional Commitments
	Slide 3: Functional Commitments
	Slide 4: Functional Commitments
	Slide 5: Functional Commitments
	Slide 6: Functional Commitments
	Slide 7: Special Cases of Functional Commitments
	Slide 8: Commitments as Proofs on Committed Data
	Slide 9: Succinct Functional Commitments
	Slide 10: Pairing-Based Functional Commitments
	Slide 11: Pairing-Based Functional Commitments
	Slide 12: This Work
	Slide 13: This Work
	Slide 14: Starting Point: Chainable Commitment
	Slide 15: Starting Point: Chainable Commitment
	Slide 16: Starting Point: Chainable Commitment
	Slide 17: Our Approach: Commit to All Wires
	Slide 18: Our Approach: Commit to All Wires
	Slide 19: Our Approach: Commit to All Wires
	Slide 20: Technical Tool: Projective Chainable Commitments
	Slide 21: Technical Tool: Projective Chainable Commitments
	Slide 22: Using Projective Chainable Commitments
	Slide 23: Using Projective Chainable Commitments
	Slide 24: Using Projective Chainable Commitments
	Slide 25: Using Projective Chainable Commitments
	Slide 26: Using Projective Chainable Commitments
	Slide 27: Using Projective Chainable Commitments
	Slide 28: Using Projective Chainable Commitments
	Slide 29: Using Projective Chainable Commitments
	Slide 30: Using Projective Chainable Commitments
	Slide 31: Using Projective Chainable Commitments
	Slide 32: Using Projective Chainable Commitments
	Slide 33: Constructing Projective Chainable Commitments
	Slide 34: Summary

