
Succinct Functional Commitments
for Circuits from 𝑘-Lin

Hoeteck Wee and David Wu

May 2024

Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

𝜋

𝝈

𝑥
Commit

“opening”

“commitment”

𝝈

Functional Commitments

Takes a common reference string and commits to an input 𝑥

Outputs commitment 𝜎 and commitment state st

𝑥
Commit

Commit crs, 𝑥 → 𝜎, st

“commitment”

Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

Open st, 𝑓 → 𝜋
Takes the commitment state and a function 𝑓 and outputs an opening 𝜋

Verify crs, 𝜎, 𝑓, 𝑦 , 𝜋 → 0/1

Commit crs, 𝑥 → 𝜎, st

Checks whether 𝜋 is valid opening of 𝜎 to value 𝑦 with respect to 𝑓

𝜋

Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

Binding: efficient adversary cannot open 𝜎 to two different values
with respect to the same 𝑓

𝝈

𝜋0

𝜋1

𝑓, 𝑦0

𝑓, 𝑦1

Verify crs, 𝜎, 𝑓, 𝑦0 , 𝜋0 = 1

Verify crs, 𝜎, 𝑓, 𝑦1 , 𝜋1 = 1

𝜋

Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

Succinctness: commitments and openings should be short
• Short commitment: 𝜎 = poly 𝜆, log 𝑥
• Short opening: 𝜋 = poly 𝜆, log 𝑥

𝜋

Special Cases of Functional Commitments

Vector commitments:

Polynomial commitments:

𝑥1, 𝑥2, … , 𝑥𝑛 𝑥𝑖

ind𝑖 𝑥1, … , 𝑥𝑛 ≔ 𝑥𝑖

commit to a vector, open at an index

𝛼0, 𝛼1, … , 𝛼𝑑

𝑓𝑥 𝛼0, … , 𝛼𝑑 ≔ 𝛼0 + 𝛼1𝑥 + ⋯ + 𝛼𝑑𝑥𝑑

𝑦

commit to a polynomial, open to the evaluation at 𝑥

Commitments as Proofs on Committed Data

𝝈
Commit crs, data

𝜋, 𝑓 data

𝜋 is a proof that the data satisfies some property
(e.g., committed input is in a certain range)

Succinctness: both the commitment and the proof are short

[dCP23] Boolean circuits SIS (non-succinct openings in general)

Succinct Functional Commitments

Scheme Function Class Assumption

[Mer87] vector commitment collision-resistant hash functions

[LY10, CF13, LM19, GRWZ20] vector commitment 𝑞-type pairing assumptions

[KZG10, Lee20] polynomial commitment 𝑞-type pairing assumptions

[CF13, LM19, BBF19] vector commitment groups of unknown order

[BFS19, BHRRS21, BF23] polynomial commitment groups of unknown order

[PPS21] vector commitment short integer solutions (SIS)

[LRY16] Boolean circuits collision-resistant hash functions + SNARKs

[LRY16] linear functions 𝑞-type pairing assumptions

[ACLMT22, CLM23] constant-degree polynomials 𝑘-𝑅-ISIS assumption (lattices)

(not an exhaustive list!)

[BCFL23] Boolean circuits twin 𝑘-𝑅-ISIS (lattice) / HiKER (pairing)

[KLVW23] Boolean circuits batch arguments for NP

[WW23a, WW23b] Boolean circuits ℓ-succinct SIS

[CLM23, FLV23] polynomial commitment 𝑘-R-ISIS assumption (lattices)

Pairing-Based Functional Commitments

This work: functional commitments for general circuits using pairings

Why bilinear maps? Schemes have the best succinctness
• Pairing-based SNARKs just have a constant number of group elements

Can we construct a functional commitment for general circuits where the size of the
commitment and the opening contain a constant number of group elements?

Namely: match the succinctness of pairing-based SNARKs, but only using standard pairing-
based assumption (no knowledge assumptions or ideal models)

Pairing-Based Functional Commitments

This work: functional commitments for general circuits using pairings

Scheme Function Class Assumptioncrs 𝜎 𝜋

[LRY16, Gro16] arithmetic circuits generic group𝑂 𝑠 𝑂 1 𝑂 1

[LRY16] linear functions subgroup decision𝑂 ℓ 𝑂 1 𝑂 𝑚

[LM19] linear functions generic group𝑂 ℓ𝑚 𝑂 1 𝑂 1

[LP20] 𝜇-sparse polynomials über assumption𝑂 𝜇 𝑂 𝑚 𝑂 1

[CFT22] degree-𝑑 polynomials ℓ𝑑-Diffie-Hellman exponent𝑂 ℓ𝑑𝑚 𝑂 𝑑 𝑂 𝑑

[BCFL23] arithmetic circuits hinted kernel (𝑞-type)𝑂 𝑠5 𝑂 1 𝑂 𝑑

[KLVW23] arithmetic circuits 𝑘-Linpoly 𝜆 𝑂 1 poly 𝜆

This work arithmetic circuits bilateral 𝒌-Lin𝑶 𝒔𝟓 𝑶 𝟏 𝑶 𝟏

ℓ = input length, 𝑚 = output length, 𝑠 = circuit size metrics in # group elements

This Work

This work: functional commitments for general circuits using pairings

Scheme Function Class Assumptioncrs 𝜎 𝜋

This work arithmetic circuits bilateral 𝒌-Lin𝑶 𝒔𝟓 𝑶 𝟏 𝑶 𝟏

• First pairing-based construction for general circuits based on falsifiable assumptions
where commitment and openings contain constant number of group elements
• Previously: needed SNARKs (non-falsifiable assumptions)

• First scheme that only makes black-box use of cryptographic primitives/algorithms where
the commitment + opening size is poly 𝜆 bits
• Previously: need non-black-box techniques (e.g., SNARKs or BARGs for NP)

This Work

This work: functional commitments for general circuits using pairings

Scheme Function Class Assumptioncrs 𝜎 𝜋

This work arithmetic circuits bilateral 𝒌-Lin𝑶 𝒔𝟓 𝑶 𝟏 𝑶 𝟏

Additional implications (for free!):
• SNARG for P/poly with a universal setup with constant-size proofs (CRS only depends on

the size of the circuit)
• Previously (from pairings): SNARG for P/poly with circuit-dependent CRS [GZ21]

• Homomorphic signature for general (bounded-size) circuits with constant-size signatures
• Previously (from pairings): Signature size scaled with the depth of the circuit [BCFL23]

Constant number
of group elements

(all results without relying on knowledge assumptions or ideal models)

Starting Point: Chainable Commitment

Chainable commitment [BCFL23]

Let 𝑓: ℤ𝑝
𝑘 → ℤ𝑝

ℓ be a vector-valued function

𝑥1

𝑥2

⋮

𝑥𝑘

𝜎𝒙

succinct commitment to
vector 𝒙

𝑦1

𝑦2

⋮

𝑦ℓ

𝜎𝒚

succinct commitment to
vector 𝒚 = 𝑓 𝒙succinct opening 𝜋

Instead of committing to 𝒙
and opening to 𝒚 = 𝑓 𝒙

Open to commitment to
𝒚 = 𝑓 𝒙

Can think of commitment
as a subset product:

𝜎 = ෑ

𝑖∈ 𝑘

ℎ𝑖
𝑥𝑖

where ℎ𝑖 are in the CRS

Chain binding: cannot
open 𝜎in to two distinct
commitments 𝜎out, 𝜎out

′

Starting Point: Chainable Commitment

Chainable commitment for quadratic functions ⇒ functional commitment for circuits

gate

gate

gate

gate

gate

gate

𝜎
Commit to
input wires 𝜎1

′ 𝜎2
′

Commitments to internal
layers and output layer

𝜎3
′

𝜋1 𝜋2 𝜋3

Chainable commitment openings for each layer

[BCFL23]

Assume: each gate
computes quadratic

function

opening

opening

Starting Point: Chainable Commitment

Chainable commitment for quadratic functions ⇒ functional commitment for circuits

gate

gate

gate

gate

gate

gate

𝜎
Commit to
input wires 𝜎1

′ 𝜎2
′

Commitments to internal
layers and output layer

𝜎3
′

𝜋1 𝜋2 𝜋3

Chainable commitment openings for each layer

Commitment: 𝜎
Opening: 𝜎1

′, 𝜎2
′ , 𝜎3

′ , 𝜋1, 𝜋2, 𝜋3

Opening scales with
depth of circuit

[BCFL23]

Our Approach: Commit to All Wires

Goal: Constant number of group elements for commitment and openings

𝑥1 𝑥2 ⋯ 𝑥𝑘 𝑦1 𝑦2 ⋯ 𝑦ℓ 𝑧1 𝑧2 ⋯ 𝑧𝑡 𝜎1

Input layer Intermediate layer Output layer

𝑥1 𝑥2 ⋯ 𝑥𝑘 𝑦1 𝑦2 ⋯ 𝑦ℓ 𝑧1 𝑧2 ⋯ 𝑧𝑡 𝜎2

Commitment: (same as before)

𝑥1 𝑥2 ⋯ 𝑥𝑘 𝜎input

Opening: commit to all wires (i.e., concatenated together) twice

Verifier know output 𝑧1, … , 𝑧𝑡 :

𝑧1 𝑧2 ⋯ 𝑧𝑡 𝜎output

Our Approach: Commit to All Wires

Goal: Constant number of group elements for commitment and openings

𝑥1 𝑥2 ⋯ 𝑥𝑘 𝑦1 𝑦2 ⋯ 𝑦ℓ 𝑧1 𝑧2 ⋯ 𝑧𝑡 𝜎1

Input layer Intermediate layer Output layer

𝑥1 𝑥2 ⋯ 𝑥𝑘 𝑦1 𝑦2 ⋯ 𝑦ℓ 𝑧1 𝑧2 ⋯ 𝑧𝑡 𝜎2

Commitment: (same as before)

𝑥1 𝑥2 ⋯ 𝑥𝑘 𝜎input

Opening: commit to all wires (i.e., concatenated together) twice

Verifier know output 𝑧1, … , 𝑧𝑡 :

𝑧1 𝑧2 ⋯ 𝑧𝑡 𝜎output

Everything is short, but how
do we argue binding?

Our Approach: Commit to All Wires

Goal: Constant number of group elements for commitment and openings

Commitment: (same as before)

𝑥1 𝑥2 ⋯ 𝑥𝑘 𝜎input

Opening: commit to all wires (i.e., concatenated together) twice

Verifier know output 𝑧1, … , 𝑧𝑡 :

𝑧1 𝑧2 ⋯ 𝑧𝑡 𝜎output

Neither 𝜎1 nor 𝜎2 is a quadratic function of 𝜎input

With bilinear maps, we only know how to check quadratic functions

𝑥1 𝑥2 ⋯ 𝑥𝑘 𝑦1 𝑦2 ⋯ 𝑦ℓ 𝑧1 𝑧2 ⋯ 𝑧𝑡 𝜎1

𝑥1 𝑥2 ⋯ 𝑥𝑘 𝑦1 𝑦2 ⋯ 𝑦ℓ 𝑧1 𝑧2 ⋯ 𝑧𝑡 𝜎2

Technical Tool: Projective Chainable Commitments

𝑥1 ⋯ 𝑥𝑗 𝑥𝑗+1 ⋯ 𝑥𝑛 𝜎1

Project(𝜎1, 𝑗)

𝑥1 ⋯ 𝑥𝑗 0 ⋯ 0 𝜎1
𝑗

Intuitively: can associate CRS with
an index 𝑗 that allows projecting a

commitment 𝜎1 onto a
commitment to the first 𝑗 indices

𝑥1 ⋯ 𝑥𝑗 𝑥𝑗+1 ⋯ 𝑥𝑛 𝜎2

Project(𝜎2, 𝑗 + 1)

𝑥1 ⋯ 𝑥𝑗 𝑥𝑗+1 ⋯ 0 𝜎2
𝑗+1

Vanilla chain binding: given (𝜎1, 𝜎2, 𝜋) and 𝜎1
′, 𝜎2

′ , 𝜋′

If 𝜎1 = 𝜎1
′ and

• 𝜎2, 𝜋, 𝑓 is a valid opening for 𝜎1

• 𝜎2
′ , 𝜋′, 𝑓 is a valid opening for 𝜎1

′

Then, 𝜎2 = 𝜎2
′

Technical Tool: Projective Chainable Commitments

𝑥1 ⋯ 𝑥𝑗 𝑥𝑗+1 ⋯ 𝑥𝑛 𝜎1

Project(𝜎1, 𝑗)

𝑥1 ⋯ 𝑥𝑗 0 ⋯ 0 𝜎1
𝑗

Intuitively: can associate CRS with
an index 𝑗 that allows projecting a

commitment 𝜎1 onto a
commitment to the first 𝑗 indices

𝑥1 ⋯ 𝑥𝑗 𝑥𝑗+1 ⋯ 𝑥𝑛 𝜎2

Project(𝜎2, 𝑗 + 1)

𝑥1 ⋯ 𝑥𝑗 𝑥𝑗+1 ⋯ 0 𝜎2
𝑗+1

Projective chain binding: given (𝜎1, 𝜎2, 𝜋) and 𝜎1
′, 𝜎2

′ , 𝜋′

If Project(td, 𝜎1, 𝑗) = Project(td, 𝜎1
′, 𝑗) and

• 𝜎2, 𝜋, 𝑓 is a valid opening for 𝜎1

• 𝜎2
′ , 𝜋′, 𝑓 is a valid opening for 𝜎1

′

Then, Project(td, 𝜎2, 𝑗 + 1) = Project(td, 𝜎2
′ , 𝑗 + 1)

Using Projective Chainable Commitments

𝑥1 𝑥2 ⋯ 𝑥𝑘 𝑦1 𝑦2 ⋯ 𝑦ℓ 𝑧1 𝑧2 ⋯ 𝑧𝑡 𝜎1, 𝜎2

𝑥1 𝑥2 ⋯ 𝑥𝑘 𝜎in

𝑧1 𝑧2 ⋯ 𝑧𝑡 𝜎out

Prove statements of the following form:
• Input consistency: first 𝑘 wires in 𝜎1 is consistent with 𝜎input

• Gate consistency: first 𝑗 + 1 wires in 𝜎2 is consistent with first 𝑗 wires in 𝜎1

opening

Using Projective Chainable Commitments

𝑥1 𝑥2 ⋯ 𝑥𝑘 𝑦1 𝑦2 ⋯ 𝑦ℓ 𝑧1 𝑧2 ⋯ 𝑧𝑡 𝜎1, 𝜎2

𝑥1 𝑥2 ⋯ 𝑥𝑘 𝜎in

𝑧1 𝑧2 ⋯ 𝑧𝑡 𝜎out

Prove statements of the following form:
• Input consistency: first 𝑘 wires in 𝜎1 is consistent with 𝜎input

• Gate consistency: first 𝑗 + 1 wires in 𝜎2 is consistent with first 𝑗 wires in 𝜎1

• Internal consistency: first 𝑗 wires in 𝜎1 is consistent with first 𝑗 wires in 𝜎2

• Output consistency: last 𝑡 wires in 𝜎1 are consistent with 𝜎output

This is a quadratic
relation (since we have
the intermediate wires)

Using Projective Chainable Commitments

𝑥1 𝑥2 ⋯ 𝑥𝑘 𝜎in

Consider two different openings: 𝜎1, 𝜎2, 𝜎out, 𝜋 and 𝜎1
′, 𝜎2

′ , 𝜎out
′ , 𝜋′

Step 1: Input consistency between 𝜎in and 𝜎1, 𝜎1
′

𝜎1, 𝜎1
′

𝜎2, 𝜎2
′

Projective chain binding: 𝜎1, 𝜎1
′ are both openings for 𝜎in so Project 𝜎1, 𝑘 = Project 𝜎1

′, 𝑘

Initially: no guarantees on what 𝜎1, 𝜎1
′, 𝜎2, 𝜎2

′ commit to

Using Projective Chainable Commitments

𝑥1 𝑥2 ⋯ 𝑥𝑘 𝜎in

Consider two different openings: 𝜎1, 𝜎2, 𝜎out, 𝜋 and 𝜎1
′, 𝜎2

′ , 𝜎out
′ , 𝜋′

ො𝑥1 ො𝑥2 ⋯ ො𝑥𝑘

Step 1: Input consistency between 𝜎in and 𝜎1, 𝜎1
′

𝜎1, 𝜎1
′

𝜎2, 𝜎2
′

Projective chain binding: 𝜎1, 𝜎1
′ are both openings for 𝜎in so Project 𝜎1, 𝑘 = Project 𝜎1

′, 𝑘

𝜎1 and 𝜎1
′ agree on first 𝑘 components:

Project 𝜎1, 𝑘 = Project 𝜎1
′, 𝑘

Note: we do not know what values
they have, only that they agree

Using Projective Chainable Commitments

𝑥1 𝑥2 ⋯ 𝑥𝑘 𝜎in

Consider two different openings: 𝜎1, 𝜎2, 𝜎out, 𝜋 and 𝜎1
′, 𝜎2

′ , 𝜎out
′ , 𝜋′

ො𝑥1 ො𝑥2 ⋯ ො𝑥𝑘 𝜎1, 𝜎1
′

𝜎2, 𝜎2
′

𝜎1 and 𝜎1
′ agree on first 𝑘 components:

Project 𝜎1, 𝑘 = Project 𝜎1
′, 𝑘

Note: we do not know what values
they have, only that they agree

Step 2: Gate consistency between first 𝑘 wires in 𝜎1, 𝜎1
′

with first 𝑘 + 1 wires in 𝜎2, 𝜎2
′

Since Project 𝜎1, 𝑘 = Project 𝜎1
′, 𝑘 , projective chain binding implies Project 𝜎2, 𝑘 + 1 = Project 𝜎2

′ , 𝑘 + 1

Using Projective Chainable Commitments

𝑥1 𝑥2 ⋯ 𝑥𝑘 𝜎in

Consider two different openings: 𝜎1, 𝜎2, 𝜎out, 𝜋 and 𝜎1
′, 𝜎2

′ , 𝜎out
′ , 𝜋′

෤𝑥1 ෤𝑥2 ⋯ ෤𝑥𝑘 ෤𝑦1

Step 2: Gate consistency between first 𝑘 wires in 𝜎1, 𝜎1
′

with first 𝑘 + 1 wires in 𝜎2, 𝜎2
′

𝜎1, 𝜎1
′

𝜎2, 𝜎2
′

𝜎2 and 𝜎2
′ agree on first 𝑘 + 1 components:

Project 𝜎2, 𝑘 + 1 = Project 𝜎2
′ , 𝑘 + 1

Since Project 𝜎1, 𝑘 = Project 𝜎1
′, 𝑘 , projective chain binding implies Project 𝜎2, 𝑘 + 1 = Project 𝜎2

′ , 𝑘 + 1

ො𝑥1 ො𝑥2 ⋯ ො𝑥𝑘

Using Projective Chainable Commitments

𝑥1 𝑥2 ⋯ 𝑥𝑘 𝜎in

Consider two different openings: 𝜎1, 𝜎2, 𝜎out, 𝜋 and 𝜎1
′, 𝜎2

′ , 𝜎out
′ , 𝜋′

෤𝑥1 ෤𝑥2 ⋯ ෤𝑥𝑘 ෤𝑦1

Step 3: Internal consistency between first 𝑘 + 1 wires in
𝜎2, 𝜎2

′ with first 𝑘 + 1 wires in 𝜎1, 𝜎1
′

𝜎1, 𝜎1
′

𝜎2, 𝜎2
′

𝜎2 and 𝜎2
′ agree on first 𝑘 + 1 components:

Project 𝜎2, 𝑘 + 1 = Project 𝜎2
′ , 𝑘 + 1

Since Project 𝜎2, 𝑘 + 1 = Project 𝜎2
′ , 𝑘 + 1 , projective chain binding implies Project 𝜎1, 𝑘 + 1 = Project 𝜎1

′, 𝑘 + 1

ො𝑥1 ො𝑥2 ⋯ ො𝑥𝑘

Using Projective Chainable Commitments

𝑥1 𝑥2 ⋯ 𝑥𝑘 𝜎in

Consider two different openings: 𝜎1, 𝜎2, 𝜎out, 𝜋 and 𝜎1
′, 𝜎2

′ , 𝜎out
′ , 𝜋′

෤𝑥1 ෤𝑥2 ⋯ ෤𝑥𝑘 ෤𝑦1

Step 3: Internal consistency between first 𝑘 + 1 wires in
𝜎2, 𝜎2

′ with first 𝑘 + 1 wires in 𝜎1, 𝜎1
′

𝜎1, 𝜎1
′

𝜎2, 𝜎2
′

𝜎1 and 𝜎1
′ agree on first 𝑘 + 1 components:

Project 𝜎1, 𝑘 + 1 = Project 𝜎1
′, 𝑘 + 1

Since Project 𝜎2, 𝑘 + 1 = Project 𝜎2
′ , 𝑘 + 1 , projective chain binding implies Project 𝜎1, 𝑘 + 1 = Project 𝜎1

′, 𝑘 + 1

ො𝑥1 ො𝑥2 ⋯ ො𝑥𝑘 ො𝑦1

Using Projective Chainable Commitments

𝑥1 𝑥2 ⋯ 𝑥𝑘 𝜎in

Consider two different openings: 𝜎1, 𝜎2, 𝜎out, 𝜋 and 𝜎1
′, 𝜎2

′ , 𝜎out
′ , 𝜋′

ො𝑥1 ො𝑥2 ⋯ ො𝑥𝑘 ො𝑦1

෤𝑥1 ෤𝑥2 ⋯ ෤𝑥𝑘 ෤𝑦1

𝜎1, 𝜎1
′

𝜎2, 𝜎2
′

𝜎1 and 𝜎1
′ agree on first 𝑘 + 1 components:

Project 𝜎1, 𝑘 + 1 = Project 𝜎1
′, 𝑘 + 1

Observe: we have established that Project 𝜎1, 𝑘 + 1 = Project(𝜎1
′, 𝑘 + 1)

Can iterate this strategy for each index 𝑘 + 1, 𝑘 + 2, … to argue that 𝜎1, 𝜎1
′ agree on all components

Using Projective Chainable Commitments

𝑥1 𝑥2 ⋯ 𝑥𝑘 𝜎in

Consider two different openings: 𝜎1, 𝜎2, 𝜎out, 𝜋 and 𝜎1
′, 𝜎2

′ , 𝜎out
′ , 𝜋′

ො𝑥1 ො𝑥2 ⋯ ො𝑥𝑘 ො𝑦1 ො𝑦2 ⋯ ො𝑦ℓ Ƹ𝑧1 Ƹ𝑧2 ⋯ Ƹ𝑧𝑡

෤𝑥1 ෤𝑥2 ⋯ ෤𝑥𝑘 ෤𝑦1 ෤𝑦2 ⋯ ෤𝑦ℓ ǁ𝑧1 ǁ𝑧2 ⋯ ǁ𝑧ℓ

𝜎1, 𝜎1
′

𝜎2, 𝜎2
′

Observe: we have established that Project 𝜎1, 𝑘 + 1 = Project(𝜎1
′, 𝑘 + 1)

Can iterate this strategy for each index 𝑘 + 1, 𝑘 + 2, … to argue that 𝜎1, 𝜎1
′ agree on all components

Using Projective Chainable Commitments

𝑥1 𝑥2 ⋯ 𝑥𝑘 𝜎in

Consider two different openings: 𝜎1, 𝜎2, 𝜎out, 𝜋 and 𝜎1
′, 𝜎2

′ , 𝜎out
′ , 𝜋′

ො𝑥1 ො𝑥2 ⋯ ො𝑥𝑘 ො𝑦1 ො𝑦2 ⋯ ො𝑦ℓ Ƹ𝑧1 Ƹ𝑧2 ⋯ Ƹ𝑧𝑡

෤𝑥1 ෤𝑥2 ⋯ ෤𝑥𝑘 ෤𝑦1 ෤𝑦2 ⋯ ෤𝑦ℓ ǁ𝑧1 ǁ𝑧2 ⋯ ǁ𝑧ℓ

𝜎1, 𝜎1
′

𝜎2, 𝜎2
′

If 𝜎1 = 𝜎1
′, then final output commitment check ensures 𝜎out = 𝜎out

′

Similar proof strategy as [GZ21, CJJ21, KLVW23]

Constructing Projective Chainable Commitments

Starting point: Kiltz-Wee [KW15] proof system for proving membership in linear spaces

Basic scheme supports opening to a fixed linear function

Extend to any linear function using multiple copies of the scheme (for basis functions)

Extend to quadratic functions via tensoring and linearization

Projective chainable commitments: embed commitment in a vector space

Real commitment lie in one subspace, projected commitment lie in a “shadow” subspace

Security follows from bilateral 𝑘-Lin

[see paper for details]

similar projection as [GZ19], but with additional locality constraints

Summary

This work: functional commitments for general circuits using pairings

Scheme Function Class Assumptioncrs 𝜎 𝜋

This work arithmetic circuits bilateral 𝒌-Lin𝑶 𝒔𝟓 𝑶 𝟏 𝑶 𝟏

• First pairing-based construction for general circuits based on falsifiable assumptions
where commitment and openings contain constant number of group elements

• First scheme that only makes black-box use of cryptographic primitives/algorithms where
the commitment + opening size is poly 𝜆 bits

Open problem: Construction with shorter CRS (e.g., linear-size)? Then, parameters would
match state-of-the-art pairing-based SNARKs.

Thank you!
https://eprint.iacr.org/2024/688

	Slide 1: Succinct Functional Commitments for Circuits from k-Lin
	Slide 2: Functional Commitments
	Slide 3: Functional Commitments
	Slide 4: Functional Commitments
	Slide 5: Functional Commitments
	Slide 6: Functional Commitments
	Slide 7: Special Cases of Functional Commitments
	Slide 8: Commitments as Proofs on Committed Data
	Slide 9: Succinct Functional Commitments
	Slide 10: Pairing-Based Functional Commitments
	Slide 11: Pairing-Based Functional Commitments
	Slide 12: This Work
	Slide 13: This Work
	Slide 14: Starting Point: Chainable Commitment
	Slide 15: Starting Point: Chainable Commitment
	Slide 16: Starting Point: Chainable Commitment
	Slide 17: Our Approach: Commit to All Wires
	Slide 18: Our Approach: Commit to All Wires
	Slide 19: Our Approach: Commit to All Wires
	Slide 20: Technical Tool: Projective Chainable Commitments
	Slide 21: Technical Tool: Projective Chainable Commitments
	Slide 22: Using Projective Chainable Commitments
	Slide 23: Using Projective Chainable Commitments
	Slide 24: Using Projective Chainable Commitments
	Slide 25: Using Projective Chainable Commitments
	Slide 26: Using Projective Chainable Commitments
	Slide 27: Using Projective Chainable Commitments
	Slide 28: Using Projective Chainable Commitments
	Slide 29: Using Projective Chainable Commitments
	Slide 30: Using Projective Chainable Commitments
	Slide 31: Using Projective Chainable Commitments
	Slide 32: Using Projective Chainable Commitments
	Slide 33: Constructing Projective Chainable Commitments
	Slide 34: Summary

