
Protecting Patient Privacy
in Genomic Analysis

David Wu
Stanford University

based on joint works with:

Gill Bejerano, Bonnie Berger, Johannes A. Birgmeier,
Dan Boneh, Hyunghoon Cho, and Karthik A. Jagadeesh

Rare Disease Diagnosis

Patients with Kabuki Syndrome

Each patient has a list of 200-400
rare variants over ≈20,000 genes

What gene causes a specific (rare) disease?

Jagadeesh-W-Birgmeier-Boneh-Bejerano [Science 2017]

Rare Disease Diagnosis

Patients with Kabuki Syndrome

Each patient has a list of 200-400
rare variants over ≈20,000 genes

0

1

⋮

0

1

1

⋮

0

0

1

⋮

1

0

0

⋮

0

0

1

⋮

0

A1BG

ZZZ3

Each patient has a vector 𝑣
where 𝑣𝑖 = 1 if patient has

a rare variant in gene 𝑖G
e

n
e

Goal: Identify gene with
most variants across all

patients

Jagadeesh-W-Birgmeier-Boneh-Bejerano [Science 2017]

Rare Disease Diagnosis

Patients with Kabuki Syndrome

Each patient has a list of 200-400
rare variants over ≈20,000 genes

0

1

⋮

0

1

1

⋮

0

0

1

⋮

1

0

0

⋮

0

0

1

⋮

0

A1BG

ZZZ3

G
e

n
e

Works well for Mendelian
(monogenic) diseases (estimated

to affect ≈10% of individuals)

Each patient has a vector 𝑣
where 𝑣𝑖 = 1 if patient has

a rare variant in gene 𝑖

Goal: Identify gene with
most variants across all

patients

Jagadeesh-W-Birgmeier-Boneh-Bejerano [Science 2017]

Patients often in
geographically-diverse locations

Rare Disease Diagnosis
Jagadeesh-W-Birgmeier-Boneh-Bejerano [Science 2017]

Trusted
Party

Question: Can we perform this
computation without seeing
complete patient genomes?

Rare Disease Diagnosis

Patients with Kabuki Syndrome

Each patient has a list of 200-400
rare variants over ≈20,000 genes

Patients “secret share”
their data with two

non-colluding hospitals

𝑟 𝑥 − 𝑟

Jagadeesh-W-Birgmeier-Boneh-Bejerano [Science 2017]

Rare Disease Diagnosis

Patients with Kabuki Syndrome

Each patient has a list of 200-400
rare variants over ≈20,000 genes

MPC Protocol

Patients “secret share”
their data with two

non-colluding hospitals

Hospitals run a multiparty
computation (MPC)

protocol on pooled inputs

Jagadeesh-W-Birgmeier-Boneh-Bejerano [Science 2017]

Rare Disease Diagnosis

Patients with Kabuki Syndrome

Each patient has a list of 200-400
rare variants over ≈20,000 genes

MPC Protocol

Top variants (sorted):
KMT2D, COL6A1, FLNB

Known cause of disease

Jagadeesh-W-Birgmeier-Boneh-Bejerano [Science 2017]

Rare Disease Diagnosis

Patients with Kabuki Syndrome

Each patient has a list of 200-400
rare variants over ≈20,000 genes

MPC Protocol

Top variants (sorted):
KMT2D, COL6A1, FLNB

Other variants that the
patients possess are kept

hidden

Jagadeesh-W-Birgmeier-Boneh-Bejerano [Science 2017]

Rare Disease Diagnosis
Jagadeesh-W-Birgmeier-Boneh-Bejerano [Science 2017]

General techniques apply to many different scenarios for diagnosing Mendelian diseases

Patients with Kabuki Syndrome

0
1
⋮
0

1
1
⋮
0

0
1
⋮
1

0
0
⋮
0

0
1
⋮
0

A1BG

ZZZ3

G
e

n
e

Identify causal gene for a rare disease
given a small patient cohort

0
1
⋮
0

1
1
⋮
0

Identify patients with the same
rare functional mutation at two different hospitals

Identify rare functional variants
that are present in the child but in

neither of the parents

Rare Disease Diagnosis
Jagadeesh-W-Birgmeier-Boneh-Bejerano [Science 2017]

Patients with Kabuki Syndrome

0
1
⋮
0

1
1
⋮
0

0
1
⋮
1

0
0
⋮
0

0
1
⋮
0

A1BG

ZZZ3

G
e

n
e

Identify causal gene for a rare disease
given a small patient cohort

0
1
⋮
0

1
1
⋮
0

Identify patients with the same
rare functional mutation at two different hospitals

Simple frequency-based algorithms, but
techniques enabled us to discover a

previously unidentified pathogenic variant

General techniques apply to many different scenarios for diagnosing Mendelian diseases

Identify rare functional variants
that are present in the child but in

neither of the parents

End-to-End Time Communication

Number of Patients
10 10050

9.6 s

13.7 s
15.8 s

41.0 MB

62.2 MB
72.7 MB

Rare Disease Diagnosis
Jagadeesh-W-Birgmeier-Boneh-Bejerano [Science 2017]

Experimental benchmarks for identifying causal gene in small disease cohort
• Simulated two non-colluding entities with 1 server on East Coast and 1 on West Coast

End-to-End Time Communication

Number of Patients
10 10050

9.6 s

13.7 s
15.8 s

41.0 MB

62.2 MB
72.7 MB

Rare Disease Diagnosis
Jagadeesh-W-Birgmeier-Boneh-Bejerano [Science 2017]

Experimental benchmarks for identifying causal gene in small disease cohort
• Simulated two non-colluding entities with 1 server on East Coast and 1 on West Coast

For many rare disease diagnosis
scenarios, disease cohort size can
be very small (e.g., 5-10 patients)

Secure Genome Computation

MPC Protocol

Modern cryptographic tools enable useful computations while
protecting the privacy of individual genomes

Secure Genome Computation

MPC Protocol

Modern cryptographic tools enable useful computations while
protecting the privacy of individual genomes

Techniques apply to general
computations over private data

Yao’s Protocol for Two-Party Computation

Yao’s Protocol for Two-Party Computation [Yao82]

Classic protocol for two-party computation

0

1

⋮

0

1

1

⋮

0

Private
inputs

0

1

⋮

0

Security guarantee: everything
the parties learn can be inferred

from the output and their
individual inputs

Yao’s Protocol for Two-Party Computation [Yao82]

0

1

⋮

0

1

1

⋮

0

Private
inputs

Step 1: Model computation as a
Boolean circuit

Party 1
“garbler”

Party 2
“evaluator”

AND

AND

NAND

Party 1

Party 1

Party 2

Party 2

Output

Yao’s Protocol for Two-Party Computation [Yao82]

Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)

AND

AND

NAND

Party 1

Party 1

Party 2

Party 2

Output

0 1

0 1

0 1

0 1

Garbler chooses two different encryption keys for every wire in the circuit

0 1

0 1

0 1

Each key is associated with
a possible wire value

Yao’s Protocol for Two-Party Computation [Yao82]

Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)

AND
Party 1

Party 2

0 1

0 1

Garbler constructs a garbled truth table for each gate in the circuit

0 1
Party 1 Party 2

Output
Inputs

0

0

1

1

0

1

0

1

0

0

0

1

0

0

1

1

0

1

0

1

0

0

0

1
Idea: Encrypt the output key (for

the output wire) with the two
input keys (for the input wires)

Yao’s Protocol for Two-Party Computation [Yao82]

Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)

Garbler constructs a garbled truth table for each gate in the circuit

Party 1 Party 2
Output

Inputs

0

0

1

1

0

1

0

1

0

0

0

1

0

0

1

1

0

1

0

1

0

0

0

1

0

00

Enc 𝑘0
(1)
, Enc 𝑘0

2
, 𝑘0

(out)

Yao’s Protocol for Two-Party Computation [Yao82]

Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)

Garbler constructs a garbled truth table for each gate in the circuit

Party 1 Party 2
Output

Inputs

0

0

1

1

0

1

0

1

0

0

0

1

0

0

1

1

0

1

0

1

0

0

0

1

0

00

Enc 𝑘0
(1)
, Enc 𝑘0

2
, 𝑘0

(out)

Key for party
1’s input

Key for party
2’s input

Key for output
wire

Yao’s Protocol for Two-Party Computation [Yao82]

Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)

Garbler constructs a garbled truth table for each gate in the circuit

Party 1 Party 2
Output

Inputs

0

0

1

1

0

1

0

1

0

0

0

1

0

0

1

1

0

1

0

1

0

0

0

1

0

00

Enc 𝑘0
(1)
, Enc 𝑘0

2
, 𝑘0

(out)

0

10

Enc 𝑘0
(1)
, Enc 𝑘1

2
, 𝑘0

(out)

0

01

Enc 𝑘1
(1)
, Enc 𝑘0

2
, 𝑘0

(out)

1

11

Enc 𝑘1
(1)
, Enc 𝑘1

2
, 𝑘1

(out)

Yao’s Protocol for Two-Party Computation [Yao82]

Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)

Garbler constructs a garbled truth table for each gate in the circuit

0

00

Enc 𝑘0
(1)
, Enc 𝑘0

2
, 𝑘0

(out)

0

10

Enc 𝑘0
(1)
, Enc 𝑘1

2
, 𝑘0

(out)

0

01

Enc 𝑘1
(1)
, Enc 𝑘0

2
, 𝑘0

(out)

1

11

Enc 𝑘1
(1)
, Enc 𝑘1

2
, 𝑘1

(out)

Garbled truth table
randomly permuted

Yao’s Protocol for Two-Party Computation [Yao82]

Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)

Garbler constructs a garbled truth table for each gate in the circuit

0

01

Enc 𝑘1
(1)
, Enc 𝑘0

2
, 𝑘0

(out)

1

11

Enc 𝑘1
(1)
, Enc 𝑘1

2
, 𝑘1

(out)

0

10

Enc 𝑘0
(1)
, Enc 𝑘1

2
, 𝑘0

(out)

0

00

Enc 𝑘0
(1)
, Enc 𝑘0

2
, 𝑘0

(out)

Garbled truth table
randomly permuted

Invariant: Given just a single key for
each input wire, evaluator can learn

a single key for the output wire

𝑘1
1

1 𝑘0
2

0

Yao’s Protocol for Two-Party Computation [Yao82]

Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)

0

01

Enc 𝑘1
(1)
, Enc 𝑘0

2
, 𝑘0

(out)

Garbled truth table
randomly permuted

Invariant: Given just a single key for
each input wire, evaluator can learn

a single key for the output wire

1

𝑘1
1

𝑘0
2

0

Yao’s Protocol for Two-Party Computation [Yao82]

Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)

0

01

Enc 𝑘1
(1)
, Enc 𝑘0

2
, 𝑘0

(out)

Garbled truth table
randomly permuted

Invariant: Given just a single key for
each input wire, evaluator can learn

a single key for the output wire

1 0

𝑘0
out

0

𝑘1
1

𝑘0
2𝑘0

out
is just a symmetric key – does

not reveal what the output bit is

Yao’s Protocol for Two-Party Computation [Yao82]

Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)

AND

AND

NAND

Party 1

Party 1

Party 2

Party 2

1

1

0

1

Invariant: Given just a single key for each
input wire and a garbled table, evaluator
can learn a single key for the output wire

1 0
0

1 1
1

0 1
0

0 0
0

1 1
1

0 1
0

1 0
0

0 0
0

1

00
1

1 0

11
0 1

0 10

Yao’s Protocol for Two-Party Computation [Yao82]

Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)

AND

AND

NAND

Party 1

Party 1

Party 2

Party 2

1

1

0

1

Invariant: Given just a single key for each
input wire and a garbled table, evaluator
can learn a single key for the output wire

0

1

1 0
0

1 1
1

0 1
0

0 0
0

1 1
1

0 1
0

1 0
0

0 0
0

1

00
1

1 0

11
0 1

0 1

Yao’s Protocol for Two-Party Computation [Yao82]

Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)

AND

AND

NAND

Party 1

Party 1

Party 2

Party 2

1

1

0

1

Invariant: Given just a single key for each
input wire and a garbled table, evaluator
can learn a single key for the output wire

0

1

1

1 0
0

1 1
1

0 1
0

0 0
0

1 1
1

0 1
0

1 0
0

0 0
0

1

00
1

1 0

11
0 1

0 1

Include decoding
table to map output
keys to output values

Yao’s Protocol for Two-Party Computation [Yao82]

Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)

Garbler can send garbled truth tables and keys for its inputs

0

1

⋮

0

1

1

⋮

0

0

1

0

⋮

keys for
Party 1’s inputs

Question: how does evaluator obtain keys for its input?

garbler evaluator

garbled tables

1 0
0

1 1
1

0 1
0

0 0
0

1 1
1

0 1
0

1 0
0

0 0
0

Yao’s Protocol for Two-Party Computation [Yao82]

Step 3: Evaluator uses “oblivious transfer” to obtain keys for its input

0

1

⋮

0

1

⋮

0

1

0 1

garbler evaluator

For each wire corresponding
to evaluator’s input, the

garbler has two keys
For each input wire, evaluator

wants to obtain key
corresponding to its input value

1

2-round protocol

At the end of the oblivious transfer protocol, garbler learns nothing about which
key evaluator obtains, and evaluator learns exactly one of the two keys

Yao’s Protocol for Two-Party Computation [Yao82]

0

1

⋮

0

1

1

⋮

0

OT message for keys
corresponding to input wires

Keys communicated using OT
(garbler does not know which

keys are transmitted)

garbler evaluator

Evaluator uses keys to evaluate
circuit gate-by-gate

Two-round protocol for secure two-party communication

Many improvements are possible
to achieve better performance

0

1

0

⋮

1

1

0

⋮

1 0
0

1 1
1

0 1
0

0 0
0

1 1
1

0 1
0

1 0
0

0 0
0

Yao’s Protocol for Two-Party Computation [Yao82]

0

1

⋮

0

1

1

⋮

0

0

1

0

⋮

OT message for keys
corresponding to input wires

1

1

0

⋮

Keys communicated using OT
(garbler does not know which

keys are transmitted)

garbler evaluator

Protocol is very efficient;
communication is the bottleneck

Two-round protocol for secure two-party communication

Many improvements are possible
to achieve better performance

1 0
0

1 1
1

0 1
0

0 0
0

1 1
1

0 1
0

1 0
0

0 0
0

The Story So Far…
Jagadeesh-W-Birgmeier-Boneh-Bejerano [Science 2017]

General techniques apply to many different scenarios for diagnosing Mendelian diseases

Patients with Kabuki Syndrome

0
1
⋮
0

1
1
⋮
0

0
1
⋮
1

0
0
⋮
0

0
1
⋮
0

A1BG

ZZZ3

G
e

n
e

Identify causal gene for a rare disease
given a small patient cohort

0
1
⋮
0

1
1
⋮
0

Identify patients with the same
rare functional mutation at two different hospitals

Identify rare functional variants
that are present in the child but in

neither of the parents

Simple frequency-based filters are useful for rare
disease diagnosis and can be efficiently

evaluated in a privacy-preserving manner

But What About More Complex Diseases?
Cho-W-Berger [Nature Biotechnology 2018]

Genome-wide association studies (GWAS):
• Identify genetic variants most correlated with

a particular disease (or particular phenotype)
• Oftentimes, focused on identifying complex

interactions between many variants

Control group (healthy)

Case group (affected)

But What About More Complex Diseases?
Cho-W-Berger [Nature Biotechnology 2018]

0 1 00 2 2 1⋯ 0

0

0

Each patient has a vector of SNPs (variations in
specific locations in genome – 3 types)

0 1 01 2 2 1⋯

1 1 00 2 2 0⋯

2 1 21 2 0 0⋯

2 1 20 2 1 1⋯

Healthy individuals

Patients with lung cancer
1

1

Disease
status

Goal: identify SNPs that
are most correlated
with disease status

But What About More Complex Diseases?
Cho-W-Berger [Nature Biotechnology 2018]

0 1 00 2 2 1⋯ 0

0

0

Each patient has a vector of SNPs (variations in
specific locations in genome – 3 types)

0 1 01 2 2 1⋯

1 1 00 2 2 0⋯

2 1 21 2 0 0⋯

2 1 20 2 1 1⋯

Healthy individuals

Patients with lung cancer
1

1

Disease
status

Goal: identify SNPs that
are most correlated
with disease status

Unlike Mendelian diseases, we are
looking for many associations

(e.g., several hundred)

But What About More Complex Diseases?
Cho-W-Berger [Nature Biotechnology 2018]

0 1 00 2 2 1⋯ 0

0

0

0 1 01 2 2 1⋯

1 1 00 2 2 0⋯

2 1 21 2 0 0⋯

2 1 20 2 1 1⋯

Healthy individuals

Patients with lung cancer
1

1

Disease
status

≈ 500,000 SNPs

≈ 25,000
individuals

But What About More Complex Diseases?
Cho-W-Berger [Nature Biotechnology 2018]

0 1 00 2 2 1⋯ 0

0

0

0 1 01 2 2 1⋯

1 1 00 2 2 0⋯

2 1 21 2 0 0⋯

2 1 20 2 1 1⋯

1

1

Disease
status

≈ 500,000 SNPs

≈ 25,000
individuals

Challenge: in real GWAS
studies, we need to

correct for population-
level differences
between groups

Arithmetic Computations on Shared Data

GWAS computations most naturally expressed as arithmetic
computations (e.g., matrix operations)

AND

AND

NAND

Party 1

Party 1

Party 2

Party 2

Output

Recall: to apply Yao’s protocol,
must first represent computation

as a Boolean circuit

Can introduce significant
overhead for arithmetic

computations!

Arithmetic Computations on Shared Data

Patients “secret share”
their data with two

non-colluding hospitals

𝑟 𝑥 − 𝑟

Approach: directly compute on
secret-shared data

Arithmetic Computations on Shared Data

3

-1

⋮

7

-2

2

⋮

0

-3

2

⋮

-7

3

-1

⋮

0

0

1

⋮

0

1

1

⋮

0
𝑣1 𝑣2

𝑟1 𝑟2 𝑣1 − 𝑟1 𝑣2 − 𝑟2

All operations done over a ring (ℤ𝑝)

𝑣1 1 𝑣2 1 𝑣1 2 𝑣2 2

𝑣1 1 + 𝑣1 2 = 𝑣1

𝑣2 1 + 𝑣2 2 = 𝑣2

Arithmetic Computations on Shared Data

3

-1

⋮

7

-2

2

⋮

0

-3

2

⋮

-7

3

-1

⋮

0

0

1

⋮

0

1

1

⋮

0
𝑣1 𝑣2

𝑟1 𝑟2 𝑣1 − 𝑟1 𝑣2 − 𝑟2

𝑣1 1 𝑣2 1 𝑣1 2 𝑣2 2

1

1

⋮

7

0

1

⋮

-7𝑣1 1 + 𝑣2 1 = 𝑣1 + 𝑣2 1 𝑣1 2 + 𝑣2 2 = 𝑣1 + 𝑣2 2

Observation: each party
can locally compute on
their shares to obtain a

share of the sum

Arithmetic Computations on Shared Data

3

-1

⋮

7

-2

2

⋮

0

-3

2

⋮

-7

3

-1

⋮

0

0

1

⋮

0

1

1

⋮

0
𝑣1 𝑣2

𝑟1 𝑟2 𝑣1 − 𝑟1 𝑣2 − 𝑟2

𝑣1 1 𝑣2 1 𝑣1 2 𝑣2 2

1

1

⋮

7

0

1

⋮

-7𝑣1 1 + 𝑣2 1 = 𝑣1 + 𝑣2 1 𝑣1 2 + 𝑣2 2 = 𝑣1 + 𝑣2 2

For computing products on shared values
(e.g., matrix-vector products, inner products,
etc.), we can use a single-round interactive

protocol [Bea91]

Observation: each party
can locally compute on
their shares to obtain a

share of the sum

What About More Complex Diseases?
Cho-W-Berger [Nature Biotechnology 2018]

This work: first end-to-end GWAS
protocol (with population correction)

• Based on computing on secret-
shared inputs

• For 25K individuals, computation
completes in about 3 days: feasible
for performing large-scale
scientific studies

Approach: directly compute on
secret-shared data

MPC Protocol

Secure Genome Computation

Modern cryptographic tools enable useful computations while
protecting the privacy of individual genomes

MPC Protocol

Secure Genome Computation

Modern cryptographic tools enable useful computations while
protecting the privacy of individual genomes

Many other techniques (with different tradeoffs):
• Homomorphic encryption (computing on encrypted data)

[Zhang et al., 2015; Lauter et al., 2015, …]

• Differential privacy (adding noise to protect privacy)
[Simmons et al., 2016; Simmons-Berger, 2016, …]

• Intel SGX (leveraging secure hardware)
[Chen et al., 2017; Wang et al., 2016; Chen et al., 2016, …]

[Not an exhaustive list!]

https://www.ncbi.nlm.nih.gov/pubmed/28065902
https://www.ncbi.nlm.nih.gov/pubmed/26446135
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4994706/
https://www.ncbi.nlm.nih.gov/pubmed/26769317
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/genomics.pdf
https://bmcmedgenomics.biomedcentral.com/articles/10.1186/s12920-017-0281-2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4698942/

Secure Genome Computation

Project Website:

https://crypto.stanford.edu/~dwu4/genomepriv-project.html

Thank you!

MPC Protocol

