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Rare Disease Diagnosis

Patients with Kabuki Syndrome

Each patient has a list of 200-400
rare variants over ≈20,000 genes

What gene causes a specific (rare) disease?

Jagadeesh-W-Birgmeier-Boneh-Bejerano [Science 2017]
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Works well for Mendelian 
(monogenic) diseases (estimated 

to affect ≈10% of individuals)

Each patient has a vector 𝑣
where 𝑣𝑖 = 1 if patient has 

a rare variant in gene 𝑖

Goal: Identify gene with 
most variants across all 

patients

Jagadeesh-W-Birgmeier-Boneh-Bejerano [Science 2017]



Patients often in
geographically-diverse locations

Rare Disease Diagnosis
Jagadeesh-W-Birgmeier-Boneh-Bejerano [Science 2017]

Trusted 
Party

Question: Can we perform this 
computation without seeing 
complete patient genomes?



Rare Disease Diagnosis

Patients with Kabuki Syndrome

Each patient has a list of 200-400
rare variants over ≈20,000 genes

Patients “secret share” 
their data with two

non-colluding hospitals

𝑟 𝑥 − 𝑟

Jagadeesh-W-Birgmeier-Boneh-Bejerano [Science 2017]



Rare Disease Diagnosis

Patients with Kabuki Syndrome

Each patient has a list of 200-400
rare variants over ≈20,000 genes

MPC Protocol

Patients “secret share” 
their data with two

non-colluding hospitals

Hospitals run a multiparty 
computation (MPC) 

protocol on pooled inputs

Jagadeesh-W-Birgmeier-Boneh-Bejerano [Science 2017]



Rare Disease Diagnosis

Patients with Kabuki Syndrome

Each patient has a list of 200-400
rare variants over ≈20,000 genes

MPC Protocol

Top variants (sorted):
KMT2D, COL6A1, FLNB

Known cause of disease

Jagadeesh-W-Birgmeier-Boneh-Bejerano [Science 2017]



Rare Disease Diagnosis

Patients with Kabuki Syndrome

Each patient has a list of 200-400
rare variants over ≈20,000 genes

MPC Protocol

Top variants (sorted):
KMT2D, COL6A1, FLNB

Other variants that the 
patients possess are kept 

hidden

Jagadeesh-W-Birgmeier-Boneh-Bejerano [Science 2017]



Rare Disease Diagnosis
Jagadeesh-W-Birgmeier-Boneh-Bejerano [Science 2017]

General techniques apply to many different scenarios for diagnosing Mendelian diseases

Patients with Kabuki Syndrome
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that are present in the child but in 
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Rare Disease Diagnosis
Jagadeesh-W-Birgmeier-Boneh-Bejerano [Science 2017]

Patients with Kabuki Syndrome
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Identify causal gene for a rare disease
given a small patient cohort
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Identify patients with the same
rare functional mutation at two different hospitals

Simple frequency-based algorithms, but 
techniques enabled us to discover a 

previously unidentified pathogenic variant

General techniques apply to many different scenarios for diagnosing Mendelian diseases

Identify rare functional variants
that are present in the child but in 

neither of the parents



End-to-End Time Communication

Number of Patients
10 10050

9.6 s

13.7 s
15.8 s

41.0 MB

62.2 MB
72.7 MB

Rare Disease Diagnosis
Jagadeesh-W-Birgmeier-Boneh-Bejerano [Science 2017]

Experimental benchmarks for identifying causal gene in small disease cohort
• Simulated two non-colluding entities with 1 server on East Coast and 1 on West Coast



End-to-End Time Communication

Number of Patients
10 10050

9.6 s

13.7 s
15.8 s

41.0 MB

62.2 MB
72.7 MB

Rare Disease Diagnosis
Jagadeesh-W-Birgmeier-Boneh-Bejerano [Science 2017]

Experimental benchmarks for identifying causal gene in small disease cohort
• Simulated two non-colluding entities with 1 server on East Coast and 1 on West Coast

For many rare disease diagnosis 
scenarios, disease cohort size can 
be very small (e.g., 5-10 patients)



Secure Genome Computation

MPC Protocol

Modern cryptographic tools enable useful computations while 
protecting the privacy of individual genomes



Secure Genome Computation

MPC Protocol

Modern cryptographic tools enable useful computations while 
protecting the privacy of individual genomes

Techniques apply to general
computations over private data
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Yao’s Protocol for Two-Party Computation [Yao82]

Classic protocol for two-party computation
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Security guarantee: everything 
the parties learn can be inferred 

from the output and their 
individual inputs



Yao’s Protocol for Two-Party Computation [Yao82]
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Step 1: Model computation as a 
Boolean circuit
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“garbler”
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“evaluator”
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Yao’s Protocol for Two-Party Computation [Yao82]

Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)

AND

AND

NAND

Party 1

Party 1

Party 2

Party 2

Output

0 1

0 1

0 1

0 1

Garbler chooses two different encryption keys for every wire in the circuit

0 1

0 1

0 1

Each key is associated with 
a possible wire value



Yao’s Protocol for Two-Party Computation [Yao82]

Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)

AND
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Party 2

0 1

0 1

Garbler constructs a garbled truth table for each gate in the circuit

0 1
Party 1 Party 2

Output
Inputs

0

0

1

1

0

1

0

1

0

0

0

1

0

0

1

1

0

1

0

1

0

0

0

1
Idea: Encrypt the output key (for 

the output wire) with the two 
input keys (for the input wires)



Yao’s Protocol for Two-Party Computation [Yao82]

Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)

Garbler constructs a garbled truth table for each gate in the circuit
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Yao’s Protocol for Two-Party Computation [Yao82]

Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)

Garbler constructs a garbled truth table for each gate in the circuit
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Key for party 
1’s input
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2’s input

Key for output 
wire



Yao’s Protocol for Two-Party Computation [Yao82]

Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)

Garbler constructs a garbled truth table for each gate in the circuit

Party 1 Party 2
Output

Inputs

0

0

1

1

0

1

0

1

0

0

0

1

0

0

1

1

0

1

0

1

0

0

0

1

0

00

Enc 𝑘0
(1)
, Enc 𝑘0

2
, 𝑘0

(out)

0

10

Enc 𝑘0
(1)
, Enc 𝑘1

2
, 𝑘0

(out)

0

01

Enc 𝑘1
(1)
, Enc 𝑘0

2
, 𝑘0

(out)

1

11

Enc 𝑘1
(1)
, Enc 𝑘1

2
, 𝑘1

(out)



Yao’s Protocol for Two-Party Computation [Yao82]

Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)

Garbler constructs a garbled truth table for each gate in the circuit
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Yao’s Protocol for Two-Party Computation [Yao82]

Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)

Garbler constructs a garbled truth table for each gate in the circuit
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Invariant: Given just a single key for 
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a single key for the output wire
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Yao’s Protocol for Two-Party Computation [Yao82]

Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)
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Yao’s Protocol for Two-Party Computation [Yao82]

Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)
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is just a symmetric key – does 

not reveal what the output bit is



Yao’s Protocol for Two-Party Computation [Yao82]

Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)
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Yao’s Protocol for Two-Party Computation [Yao82]

Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)
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Yao’s Protocol for Two-Party Computation [Yao82]

Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)
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Include decoding 
table to map output 
keys to output values



Yao’s Protocol for Two-Party Computation [Yao82]

Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)

Garbler can send garbled truth tables and keys for its inputs
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Yao’s Protocol for Two-Party Computation [Yao82]

Step 3: Evaluator uses “oblivious transfer” to obtain keys for its input
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garbler evaluator

For each wire corresponding 
to evaluator’s input, the 

garbler has two keys
For each input wire, evaluator 

wants to obtain key 
corresponding to its input value

1

2-round protocol

At the end of the oblivious transfer protocol, garbler learns nothing about which 
key evaluator obtains, and evaluator learns exactly one of the two keys



Yao’s Protocol for Two-Party Computation [Yao82]
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OT message for keys 
corresponding to input wires

Keys communicated using OT 
(garbler does not know which 

keys are transmitted)

garbler evaluator

Evaluator uses keys to evaluate 
circuit gate-by-gate

Two-round protocol for secure two-party communication

Many improvements are possible 
to achieve better performance
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Yao’s Protocol for Two-Party Computation [Yao82]
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The Story So Far…
Jagadeesh-W-Birgmeier-Boneh-Bejerano [Science 2017]

General techniques apply to many different scenarios for diagnosing Mendelian diseases

Patients with Kabuki Syndrome

0
1
⋮
0

1
1
⋮
0

0
1
⋮
1

0
0
⋮
0

0
1
⋮
0

A1BG

ZZZ3

G
e

n
e

Identify causal gene for a rare disease
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Identify patients with the same
rare functional mutation at two different hospitals

Identify rare functional variants
that are present in the child but in 

neither of the parents

Simple frequency-based filters are useful for rare 
disease diagnosis and can be efficiently 

evaluated in a privacy-preserving manner



But What About More Complex Diseases?
Cho-W-Berger [Nature Biotechnology 2018]

Genome-wide association studies (GWAS):
• Identify genetic variants most correlated with 

a particular disease (or particular phenotype)
• Oftentimes, focused on identifying complex 

interactions between many variants

Control group (healthy)

Case group (affected)



But What About More Complex Diseases?
Cho-W-Berger [Nature Biotechnology 2018]
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But What About More Complex Diseases?
Cho-W-Berger [Nature Biotechnology 2018]
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Goal: identify SNPs that 
are most correlated 
with disease status

Unlike Mendelian diseases, we are 
looking for many associations 

(e.g., several hundred)



But What About More Complex Diseases?
Cho-W-Berger [Nature Biotechnology 2018]
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But What About More Complex Diseases?
Cho-W-Berger [Nature Biotechnology 2018]
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0

0 1 01 2 2 1⋯

1 1 00 2 2 0⋯

2 1 21 2 0 0⋯

2 1 20 2 1 1⋯

1

1

Disease
status

≈ 500,000 SNPs

≈ 25,000 
individuals

Challenge: in real GWAS 
studies, we need to 

correct for population-
level differences 
between groups



Arithmetic Computations on Shared Data

GWAS computations most naturally expressed as arithmetic 
computations (e.g., matrix operations)

AND

AND

NAND

Party 1

Party 1

Party 2

Party 2

Output

Recall: to apply Yao’s protocol, 
must first represent computation 

as a Boolean circuit

Can introduce significant 
overhead for arithmetic

computations!



Arithmetic Computations on Shared Data

Patients “secret share” 
their data with two

non-colluding hospitals

𝑟 𝑥 − 𝑟

Approach: directly compute on 
secret-shared data



Arithmetic Computations on Shared Data
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Arithmetic Computations on Shared Data
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Observation: each party 
can locally compute on 
their shares to obtain a 

share of the sum



Arithmetic Computations on Shared Data
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For computing products on shared values 
(e.g., matrix-vector products, inner products, 
etc.), we can use a single-round interactive

protocol [Bea91]

Observation: each party 
can locally compute on 
their shares to obtain a 

share of the sum



What About More Complex Diseases?
Cho-W-Berger [Nature Biotechnology 2018]

This work: first end-to-end GWAS 
protocol (with population correction)

• Based on computing on secret-
shared inputs

• For 25K individuals, computation 
completes in about 3 days: feasible
for performing large-scale 
scientific studies

Approach: directly compute on 
secret-shared data

MPC Protocol



Secure Genome Computation

Modern cryptographic tools enable useful computations while 
protecting the privacy of individual genomes

MPC Protocol



Secure Genome Computation

Modern cryptographic tools enable useful computations while 
protecting the privacy of individual genomes

Many other techniques (with different tradeoffs):
• Homomorphic encryption (computing on encrypted data)

[Zhang et al., 2015; Lauter et al., 2015, …]

• Differential privacy (adding noise to protect privacy)
[Simmons et al., 2016; Simmons-Berger, 2016, …]

• Intel SGX (leveraging secure hardware)
[Chen et al., 2017; Wang et al., 2016; Chen et al., 2016, …]

[ Not an exhaustive list! ]

https://www.ncbi.nlm.nih.gov/pubmed/28065902
https://www.ncbi.nlm.nih.gov/pubmed/26446135
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4994706/
https://www.ncbi.nlm.nih.gov/pubmed/26769317
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/genomics.pdf
https://bmcmedgenomics.biomedcentral.com/articles/10.1186/s12920-017-0281-2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4698942/


Secure Genome Computation

Project Website:

https://crypto.stanford.edu/~dwu4/genomepriv-project.html

Thank you!

MPC Protocol


