
Privacy-Preserving Genome

Analysis

David Wu

Joint work with Hyunghoon Cho and Dan Boneh

The Cost of DNA Sequencing

Source: Nature, 2014

Genome

sequencing around

$1000!

The Era of Personal Genomics
big data = big

incentives

The Era of Personal Genomics

Can we compute on our genomes

without sacrificing our personal

privacy?

Computing on Encrypted Data

Why not simply encrypt our

genomes?

Computing on Encrypted Data
???

Computing on Encrypted Data

???

But if adversary cannot

learn from the data,

then neither can the

cloud!

Homomorphic Encryption

Homomorphic encryption (HE): encryption schemes that
support computation on ciphertexts

Consists of three functions:

Enc
m

c

pk

c

Dec
m

sk

Must satisfy usual notion of semantic security

Homomorphic Encryption

Homomorphic encryption: encryption schemes that support
computation on ciphertexts

Consists of three functions:

Dec�� Eva�� ��, ��, �� = � ��,��

�� = Enc��(��)

Eval�
��

�� = Enc��(��)

��

Fully Homomorphic Encryption (FHE)

Many homomorphic encryption schemes:
• ElGamal: � ��,�� = ����

• Paillier: � ��,�� = �� +��

Fully homomorphic encryption: homomorphic with
respect to two operations: addition and multiplication

• [BGN05]: one multiplication, many additions (SWHE)

• [Gen09]: first FHE construction from lattices

Outsourcing via FHE (Hypothetical)

Suppose a medical institution wants

to do a population-wide study using

genomic data

Individuals might want to

participate, but reluctant to

simply share their genome

Outsourcing via FHE (Hypothetical)

aggregation +

analytics

1. Publish public key

2. Upload encrypted

genomes

3. Perform analysis on

encrypted data

4. Decrypt to obtain model

The iDASH 2015 Competition

A competition to explore the viability of homomorphic
encryption (and multiparty computation) for secure
genomic analysis

Two tasks:

• Secure outsourcing of GWAS statistics

•Computing Hamming distance between two
sequences

Task 1: Computing GWAS Statistics

Genome-wide association study (GWAS): finding associations
between single-nucleotide polymorphisms (SNPs) and traits
(e.g., certain diseases)

AA AG AA AG GGCase:

AG AG GA GG GGControl:

Genotypes for different

individuals at a fixed location

in the genome

Two different metrics of interest: minor allele frequency
(MAF) and �� statistic

Task 1: Computing GWAS Statistics

AA AG AA AG GGCase:

AG AG GA GG GGControl:

Minor Allele Frequency:
��� ��,��

�����

Genotypes for different

individuals at a fixed location

in the genome

allele counts

��-statistic: �� = ∑
	
��
�� �

��

Observed (Obs) and expected (Exp) are

functions of the different allele counts in

the case and control groups

Task 1: Computing GWAS Statistics

Setting: hospital or medical institution sequences
patients’ genomes and stores the data encrypted

(Case, Encrypt(AA))

(Control, Encrypt(AG))

Task 1: Computing GWAS Statistics

Setting: hospital or medical institution sequences
patients’ genomes and stores the data encrypted

(Case, Encrypt(AA))

(Control, Encrypt(AG))
Server only learns the

number of entries in the case

/ control group, but not the

actual genotype!

Task 1: Computing GWAS Statistics

Want server to be able to compute GWAS statistics on
encrypted data

Compute MAF

Encrypt(0.413)

Task 1: Computing GWAS Statistics

Want server to be able to compute GWAS statistics on
encrypted data

Compute MAF

Encrypt(0.413)

Server’s response is an

encryption of the result.

Server does not learn the

result of the computation.

Striking a Balance

Minor Allele Frequency:
��� ��,��

�����

��-statistic: �� = ∑
	
��
�� �

��

Observation: allele

counts are sufficient for

computing MAF and ��

Solution: delegate aggregation to the cloud, client

computes the statistical quantities of interest

Practical Outsourcing

Solution: delegate aggregation to the cloud, client

computes the statistical quantities of interest

Solution enables use of symmetric primitives (e.g., AES)

Symmetric primitives + arithmetic faster than public key

decryption

Symmetric Encryption

AA
encode

02 0 0

�� �� �� �	 each genotype

represented as a vector

of counts

0 + �� 0 + �� 0 + ��2 + �	

blind

encrypt entries by adding independent,

blinding factors from ℤ�

Symmetric Encryption

AA 0 + �� 0 + �� 0 + ��2 + �	

AG 0 + ��

 1 + ��

 0 + ��

1 + �	

Sum 0 + �� + ��

 1 + �� + ��

 0 + �� + ��

3 + �	 + �	

decryption: compute blinding factors

and subtract

Symmetric Encryption

AA 0 + �� 0 + �� 0 + ��2 + �	

generate blinding factors using

PRF(�, tag)

tag: SNP id ǁ group id ǁ subject id

Symmetric Encryption

Homomorphic operations consist of only additions

Encryption and decryption are symmetric primitives

Further Improvements

Client must do linear work to decrypt

• Alternative: if the data comes in batches, the client

can precompute the counts per batch during

encryption

• Decryption time proportional to number of batches

Performance

SNPs Encryption Aggregation Decryption

100 0.17 0.02 0.15

1,000 1.68 0.17 1.42

10,000 17.47 1.59 15.06

100,000 179.53 17.72 145.52

Timing (in seconds) for computing MAF + �� statistics (500

subjects)

Only a few hundred lines of C++ code to implement!

Task 2: Hamming Distance Computation

chr1:101088593: (C � T)

chr1:101265309: (C � T)

chr1:10165300: (T � G)

and so on…

chr1:100011666: (T � C)

chr1:101265309: (C � T)

chr1:10165300: (T � C)

and so on…

compute the Hamming distance between two

sequences (represented as edits with respect to

a reference genome)

location of

edit

edit

Task 2: Hamming Distance Computation

chr1:101088593: (C � T)

chr1:101265309: (C � T)

chr1:10165300: (T � G)

and so on…

chr1:100011666: (T � C)

chr1:101265309: (C � T)

chr1:10165300: (T � C)

and so on…

ATGCTTAGTGGC…

ACGCTTGGTGGC…

naïve method: expand sequences,

pairwise equality test

Task 2: Hamming Distance Computation

chr1:101088593: (C � T)

chr1:101265309: (C � T)

chr1:10165300: (T � G)

and so on…

ATGCTTAGTGGC…

sequences too long: over 3

billion base pairs in human

genome

desire: protocol with performance

proportional to number of edits

Task 2: Hamming Distance Computation

chr1:101088593: (C � T)

chr1:101265309: (C � T)

chr1:10165300: (T � G)

and so on…

chr1:100011666: (T � C)

chr1:101265309: (C � T)

chr1:10165300: (T � C)

and so on…

Genome A Genome B

view genomes as sets of edits from reference:

�� �,� = � + � − 2 ⋅ � ∩ �

Homomorphic Set Intersection

chr1:101088593: (C � T)

chr1:101265309: (C � T)

chr1:10165300: (T � G)

and so on…

chr1:100011666: (T � C)

chr1:101265309: (C � T)

chr1:10165300: (T � C)

and so on…

Equality function: � �, 	 =
 � = 	

Simple solution: sum over pairwise equality tests

Homomorphic Set Intersection

Homomorphic evaluation of equality function:

If �, 	 ∈ 0,1 ,

� �, 	 =
 � = 	 = 1 − � − 	 �

Easy to generalize to � bit integers, but requires degree 2�

homomorphism
requires somewhat

homomorphic

encryption

Homomorphic Set Intersection

Hashing to decrease number of pairwise comparisons

hash elements into buckets, pairwise equality test on

hashed values within buckets

chr1:101088593: (C � T)

chr1:101265309: (C � T)

chr1:10165300: (T � G)

and so on…

chr1:100011666: (T � C)

chr1:101265309: (C � T)

chr1:10165300: (T � C)

and so on…

hashing

equality

test

Homomorphic Set Intersection: Tradeoffs

chr1:101088593: (C � T)

chr1:101265309: (C � T)

chr1:10165300: (T � G)

and so on…

More buckets � lower collision

rate, possibly more ciphertexts

More bits � lower collision rate,

more homomorphism for equality

test

Larger buckets � less likely that

bucket overflows

Tunable parameters:

• number of buckets

• bits used to represent each

element in a bucket

• bucket size

Performance

Size of Sets
Key

Generation
Hashing Encryption Computation Encryption

1,000 23.80 0.007 31.97 104.16 1.78

5,000 23.36 0.025 95.38 475.37 1.78

10,000 27.14 0.093 176.50 936.64 1.91

Timing (in seconds) for homomorphic set intersection using

HELib:

Primary drawback: key sizes + ciphertext sizes very large

(several hundred MB to just over 1 GB)

The Other Side of the Spectrum

Interaction

General MPC
Homomorphic

Encryption
Custom Protocols

Many rounds of interaction

Boolean circuits (typically)

Few rounds of interaction

Arithmetic circuits

General methods for secure computation

Secure Multiparty Computation (MPC)

Multiple parties want to compute a joint function on private

inputs

private input: personal

genomes

at the end of the computation,

identify locations in the genome

that might be correlated with a

particular disease

privacy guarantee: no party

learns anything extra about

other parties’ inputs

Two Party Computation (2PC)

• Simpler scenario: two-party computation (2PC)

• 2PC: Mostly “solved” problem: Yao’s circuits [Yao82]

• Express function as a Boolean circuit

garbled version of

circuit

oblivious transfer to obtain garbled inputs

output of garbled circuit

Two-Party Computation (2PC)

• Yao’s circuits very efficient and heavily optimized [KSS09]

• Evaluating circuits with 1.29 billion gates in 18 minutes (1.2

gates / µs) [ALSZ13]

Secure Multiparty Computation

• General MPC suffices to evaluate arbitrary functions

amongst many parties: should be viewed as a feasibility

result

• Limitations of general MPC
• more rounds of communication / interaction

• possibly large bandwidth

• hard to coordinate interactions with large number of parties

Concluding Remarks

• Personal genomics introduces many new opportunities, but

also many new security and privacy risks

• Many existing cryptographic tools exist for private and

secure computation
• SWHE / FHE: non-interactive computation on encrypted data

• 2PC / MPC: interactive computation on private inputs

• Future: hardware support for secure computation?

• Many different tradeoffs in terms of communication,

computation, rounds of interaction

Thanks!

