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The Cost of DNA Sequencing

Source: Nature, 2014

Genome 

sequencing around 

$1000!



The Era of Personal Genomics
big data = big 

incentives



The Era of Personal Genomics

Can we compute on our genomes 

without sacrificing our personal 

privacy?



Computing on Encrypted Data

Why not simply encrypt our 

genomes?



Computing on Encrypted Data
???



Computing on Encrypted Data

???

But if adversary cannot 

learn from the data, 

then neither can the 

cloud!



Homomorphic Encryption

Homomorphic encryption (HE): encryption schemes that 
support computation on ciphertexts

Consists of three functions:
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Must satisfy usual notion of semantic security



Homomorphic Encryption

Homomorphic encryption: encryption schemes that support 
computation on ciphertexts

Consists of three functions:

Dec�� Eva�� ��, ��, �� = � ��,��
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Eval�
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Fully Homomorphic Encryption (FHE)

Many homomorphic encryption schemes:
• ElGamal: � ��,�� = ����

• Paillier: � ��,�� = �� +��

Fully homomorphic encryption: homomorphic with 
respect to two operations: addition and multiplication

• [BGN05]: one multiplication, many additions (SWHE)

• [Gen09]: first FHE construction from lattices



Outsourcing via FHE (Hypothetical)

Suppose a medical institution wants 

to do a population-wide study using 

genomic data

Individuals might want to 

participate, but reluctant to 

simply share their genome



Outsourcing via FHE (Hypothetical)

aggregation + 

analytics

1. Publish public key

2. Upload encrypted 

genomes

3. Perform analysis on 

encrypted data

4. Decrypt to obtain model



The iDASH 2015 Competition

A competition to explore the viability of homomorphic 
encryption (and multiparty computation) for secure 
genomic analysis

Two tasks:

• Secure outsourcing of GWAS statistics

•Computing Hamming distance between two 
sequences



Task 1: Computing GWAS Statistics

Genome-wide association study (GWAS): finding associations 
between single-nucleotide polymorphisms (SNPs) and traits 
(e.g., certain diseases)

AA AG AA AG GGCase:

AG AG GA GG GGControl:

Genotypes for different 

individuals at a fixed location 

in the genome

Two different metrics of interest: minor allele frequency 
(MAF) and �� statistic



Task 1: Computing GWAS Statistics

AA AG AA AG GGCase:

AG AG GA GG GGControl:

Minor Allele Frequency: 
��� ��,��

�����

Genotypes for different 

individuals at a fixed location 

in the genome

allele counts

��-statistic: �� = ∑
	
���� �

��

Observed (Obs) and expected (Exp) are 

functions of the different allele counts in 

the case and control groups



Task 1: Computing GWAS Statistics

Setting: hospital or medical institution sequences 
patients’ genomes and stores the data encrypted

(Case, Encrypt(AA))

(Control, Encrypt(AG))



Task 1: Computing GWAS Statistics

Setting: hospital or medical institution sequences 
patients’ genomes and stores the data encrypted

(Case, Encrypt(AA))

(Control, Encrypt(AG))
Server only learns the 

number of entries in the case 

/ control group, but not the 

actual genotype!



Task 1: Computing GWAS Statistics

Want server to be able to compute GWAS statistics on 
encrypted data

Compute MAF

Encrypt(0.413)



Task 1: Computing GWAS Statistics

Want server to be able to compute GWAS statistics on 
encrypted data

Compute MAF

Encrypt(0.413)

Server’s response is an 

encryption of the result. 

Server does not learn the 

result of the computation.



Striking a Balance

Minor Allele Frequency: 
��� ��,��

�����

��-statistic: �� = ∑
	
���� �

��

Observation: allele 

counts are sufficient for 

computing MAF and ��

Solution: delegate aggregation to the cloud, client 

computes the statistical quantities of interest



Practical Outsourcing

Solution: delegate aggregation to the cloud, client 

computes the statistical quantities of interest

Solution enables use of symmetric primitives (e.g., AES)

Symmetric primitives + arithmetic faster than public key 

decryption



Symmetric Encryption

AA
encode

02 0 0

�� �� �� �	 each genotype 

represented as a vector 

of counts

0 + �� 0 + �� 0 + ��2 + �	

blind

encrypt entries by adding independent, 

blinding factors from ℤ�



Symmetric Encryption

AA 0 + �� 0 + �� 0 + ��2 + �	

AG 0 + ��

 1 + ��


 0 + ��

1 + �	




Sum 0 + �� + ��

 1 + �� + ��


 0 + �� + ��

3 + �	 + �	




decryption: compute blinding factors 

and subtract



Symmetric Encryption

AA 0 + �� 0 + �� 0 + ��2 + �	

generate blinding factors using

PRF(�, tag)

tag: SNP id ǁ group id ǁ subject id



Symmetric Encryption

Homomorphic operations consist of only additions

Encryption and decryption are symmetric primitives



Further Improvements

Client must do linear work to decrypt

• Alternative: if the data comes in batches, the client 

can precompute the counts per batch during 

encryption

• Decryption time proportional to number of batches



Performance

# SNPs Encryption Aggregation Decryption

100 0.17 0.02 0.15

1,000 1.68 0.17 1.42

10,000 17.47 1.59 15.06

100,000 179.53 17.72 145.52

Timing (in seconds) for computing MAF + �� statistics (500 

subjects)

Only a few hundred lines of C++ code to implement!



Task 2: Hamming Distance Computation

chr1:101088593: (C � T)

chr1:101265309: (C � T)

chr1:10165300:  (T � G)

and so on…

chr1:100011666: (T � C)

chr1:101265309: (C � T)

chr1:10165300:  (T � C)

and so on…

compute the Hamming distance between two 

sequences (represented as edits with respect to 

a reference genome)

location of 

edit

edit



Task 2: Hamming Distance Computation

chr1:101088593: (C � T)

chr1:101265309: (C � T)

chr1:10165300:  (T � G)

and so on…

chr1:100011666: (T � C)

chr1:101265309: (C � T)

chr1:10165300:  (T � C)

and so on…

ATGCTTAGTGGC…

ACGCTTGGTGGC…

naïve method: expand sequences, 

pairwise equality test



Task 2: Hamming Distance Computation

chr1:101088593: (C � T)

chr1:101265309: (C � T)

chr1:10165300:  (T � G)

and so on…

ATGCTTAGTGGC…

sequences too long: over 3 

billion base pairs in human 

genome

desire: protocol with performance 

proportional to number of edits



Task 2: Hamming Distance Computation

chr1:101088593: (C � T)

chr1:101265309: (C � T)

chr1:10165300:  (T � G)

and so on…

chr1:100011666: (T � C)

chr1:101265309: (C � T)

chr1:10165300:  (T � C)

and so on…

Genome A Genome B

view genomes as sets of edits from reference:

�� �,� = � + � − 2 ⋅ � ∩ �



Homomorphic Set Intersection

chr1:101088593: (C � T)

chr1:101265309: (C � T)

chr1:10165300:  (T � G)

and so on…

chr1:100011666: (T � C)

chr1:101265309: (C � T)

chr1:10165300:  (T � C)

and so on…

Equality function: � �, 	 = 
 � = 	

Simple solution: sum over pairwise equality tests



Homomorphic Set Intersection

Homomorphic evaluation of equality function:

If �, 	 ∈ 0,1 ,

� �, 	 = 
 � = 	 = 1 − � − 	 �

Easy to generalize to � bit integers, but requires degree 2�

homomorphism
requires somewhat 

homomorphic 

encryption



Homomorphic Set Intersection

Hashing to decrease number of pairwise comparisons

hash elements into buckets, pairwise equality test on 

hashed values within buckets

chr1:101088593: (C � T)

chr1:101265309: (C � T)

chr1:10165300:  (T � G)

and so on…

chr1:100011666: (T � C)

chr1:101265309: (C � T)

chr1:10165300:  (T � C)

and so on…

hashing

equality

test



Homomorphic Set Intersection: Tradeoffs

chr1:101088593: (C � T)

chr1:101265309: (C � T)

chr1:10165300:  (T � G)

and so on…

More buckets � lower collision 

rate, possibly more ciphertexts

More bits � lower collision rate, 

more homomorphism for equality 

test

Larger buckets � less likely that 

bucket overflows

Tunable parameters:

• number of buckets

• bits used to represent each 

element in a bucket

• bucket size



Performance

Size of Sets
Key 

Generation
Hashing Encryption Computation Encryption

1,000 23.80 0.007 31.97 104.16 1.78

5,000 23.36 0.025 95.38 475.37 1.78

10,000 27.14 0.093 176.50 936.64 1.91

Timing (in seconds) for homomorphic set intersection using 

HELib:

Primary drawback: key sizes + ciphertext sizes very large 

(several hundred MB to just over 1 GB) 



The Other Side of the Spectrum

Interaction

General MPC
Homomorphic 

Encryption
Custom Protocols

Many rounds of interaction

Boolean circuits (typically)

Few rounds of interaction

Arithmetic circuits

General methods for secure computation



Secure Multiparty Computation (MPC)

Multiple parties want to compute a joint function on private 

inputs

private input: personal 

genomes

at the end of the computation, 

identify locations in the genome 

that might be correlated with a 

particular disease

privacy guarantee: no party 

learns anything extra about 

other parties’ inputs



Two Party Computation (2PC)

• Simpler scenario: two-party computation (2PC)

• 2PC: Mostly “solved” problem: Yao’s circuits [Yao82]

• Express function as a Boolean circuit

garbled version of

circuit

oblivious transfer to obtain garbled inputs

output of garbled circuit



Two-Party Computation (2PC)

• Yao’s circuits very efficient and heavily optimized [KSS09]

• Evaluating circuits with 1.29 billion gates in 18 minutes (1.2 

gates / µs) [ALSZ13]



Secure Multiparty Computation

• General MPC suffices to evaluate arbitrary functions 

amongst many parties: should be viewed as a feasibility

result

• Limitations of general MPC
• more rounds of communication / interaction

• possibly large bandwidth

• hard to coordinate interactions with large number of parties



Concluding Remarks

• Personal genomics introduces many new opportunities, but 

also many new security and privacy risks

• Many existing cryptographic tools exist for private and 

secure computation
• SWHE / FHE: non-interactive computation on encrypted data

• 2PC / MPC: interactive computation on private inputs

• Future: hardware support for secure computation?

• Many different tradeoffs in terms of communication, 

computation, rounds of interaction



Thanks!


