Practical

Somewhathomomorphic
Encryption

David Wu
(joint work with Dan Boneh)

Homomorphic Encryption

Homomorphic encryption scheme: encryption scheme that
allows computation on ciphertexts

Comprises of three functions:

7 C : m
::[Enc]—» ::[Dec]—»
sk

pk

Must satisfy usual notion of semantic security

Homomorphic Encryption

Homomorphic encryption scheme: encryption scheme that
allows computation on ciphertexts

Comprises of three functions:

¢; = Encyi(my)

C3

Evalf]—P
c; = Encyr(my)
ekT

DeCSk (Evalf(ekJ C1, CZ)) — f(ml;mZ)

Fully Homomorphic Encryption (FHE)

Many homomorphic encryption schemes:
* EIGamal: f(my, my) = mymy
e Paillier: f(my,my) = my + my
* Goldwasser-Micali: f(my, my) = my @ my

Fully homomorphic encryption: homomorphic with respect
to two operations: addition and multiplication

* Can evaluate Boolean and arithmetic circuits

* [BGNO5]: one multiplication, many additions

* [Gen09]: first FHE construction from lattices

Fully Homomorphic Encryption

lC"(f)
c; = Encyr(my)
C

Eval]—3> C(f): circuit for some function f
c; = Encyr(my)
ekT

Correctness: Dec, (Evalf(ek, C1, cz)) = f(mq,m,)

Circuit Privacy: Encpk((?(ml,mz)) ~ Eval¢(ek, ¢y, ¢;)

Compactness: Decryption circuit has size at most poly(4)

In Theory: Secure Computation using FHE

Enc(pk,"cat")

Enc(pk, Search("cat"))

Represent “Search” function as a circuit and evaluate
homomorphically

In Practice: Secure Computation using FHE

Enc(pk,"cat")

Request timed out

FHE schemes have tremendous overhead

Somewhat Homomorphic Encryption (SWHE)

FHE supports arbitrary number of operations

Compromise: Support a limited number of
operations (e.g., evaluate circuits of a certain
depth)

* Somewhat/leveled homomorphic encryption

Brakerski’s SWHE [Bral2]

Operates over a polynomial ring: R = Z[x]/®,,,(x)
Plaintext and ciphertext are vectors of ring elements

Homomorphic multiplication much more expensive

than homomorphic addition
* Can evaluate low degree polynomials over encrypted data

Application: Statistical Analysis

Cloud aggregates
and summarizes
+ °
Skl patient data

el
+\> Model

Local hospitals

ooo

%%% EEE — —
\EI » O
alaln /
" Local hospitals Medical researcher
submit encrypted Investigating a

patient data disease outbreak

Security Model Researcher does not
learn individual patient

data other than what is

c explicitly leaked by
(Circuit Privacy) nodel

ooo

3|

L

T

—

o /
@

oono

ooo|d0o

oo

oo
og
oo

oo
oo

3|

ooo

Oooo
oo
ooo

]

Cloud does not
learn patient data (Semantic Security)
or model

Application: Statistical Analysis

Given n vectors x4, ..., X, (e.g., patient profiles), define

X to be the matrix with rows x4, ..., x,,

— 1vn
* Mean: u = —2i=1%;

» Covariance: Xy = % (MXTX — (mw)(nu)"h)
Division difficult to support, so represent as rationals

Depth O circuit for mean, depth 1 for covariance

Application: Statistical Analysis

Can also perform linear regression on encrypted data

Given design matrix X and response vector y, evaluate
normal equations:

0 =X"X)"1xTy
Invert over Q using Cramer’s rule

Depth n for n dimensional data

Batch Computation [SV11]

Encrypt + process array of values at no extra cost

Main intuition: Chinese Remainder Theorem

[Plaintext Space: R), = Zy|[x]/®, (x) }

ST

Choose p such that R), splits into smaller rings: R, =®;=; R,

Batch Computation

Encrypt + process array of values at no extra cost:

1

2

3

A

5

3

In practice: = 5000 slots

Batch Computation

Can also permute slots (via Frobenius automorphisms) [BGV12,
GHS12]

Batch Inner Products

Statistical analysis reduces to computing inner products:
1n\" /1
2 0
2| | o =1-14+42-04+3:-04+4-1=5
4 1

Naive method: Encrypt each component separately.

Requires 4 multiplications!

Batch Inner Products

Batch inner product:
encrypt multiple
components in each
ciphertext.

S W IN |-
R O O|kr
~ OO |-

Requires 1 multiplication!

Not quite what
we wanted!

Batch Inner Products

Result of batch multiplication:

Desired result:

~ OO |-

Batch Inner Products

Use automorphisms to sum up components:

U1 |1 0 1 0
v, 0] " |0 0 0
) _|_ |)
V3 | O 4 0 4
Vs | 4 1 4 1

vl | b | O |-

Ul‘l‘vz

U3+U4

Batch Inner Products

Use automorphisms to sum up components:

Ul‘l‘vz

U3+U4

)
N
Ol U | b

vl b~ O |-
Ol = 00| H

o~ O |

oo 0N

2V,

Batch Inner Products

(")

1 multiplication

\ J

() ()
logn

n multiplications .
automorphisms
\ W, \ W,

(")

Batches of size n logn additions
_ y,

Time to Compute Mean and Covariance over
Encrypted Data (Dimension 4)

70
60 /
B /
P 4)
g >0 Automorphisms
£ dominate (Multiplications
@ 40 dominate
£ L
< 30 —a—
20 \ \ \
2000 20000 200000 2000000

Number of Datapoints

Time (minutes)

1000

Time to Compute Mean and Covariance over Encrypted

Data (4096 Data Points)

900

800

700

Runtime grows

600

as 0(d?) /./

500

400
300

/./

_

200
100

0 5 10

e—

15
Data Dimension

20

25

Time to Perform Linear Regression on Encrypted Data
(2 Dimensions)

o))
o

Multiplications /

o

dominate /
X)

o

w b U
o

Automorphisms /

Time (minutes)

N
o

dominate /
_ y.

/

——

1000 10000 100000 1000000

Number of Datapoints

Time (minutes)

700

Time to Perform Linear Regression on Encrypted Data
(260,000 Data Points)

600

500

400

w
o
o

N
o
o

(" Runtime grows | yd
L so@ ~

=
o
o

o
L |

— | |

2 3 4
Dimension of Data

Conclusions

SWHE allows computation of circuits of low-depth
Batching enables scaling to nontrivial datasets

Can perform statistical analysis on encrypted data
with “reasonable” overhead

Open Source FHE Implementation:

https://github.com/dwud4/fhe-si

