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Homomorphic Encryption

Homomorphic encryption scheme: encryption scheme that
allows computation on ciphertexts

Comprises of three functions:

7 C : m
::[ Enc ]—» ::[ Dec ]—»
sk

pk

Must satisfy usual notion of semantic security
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Homomorphic encryption scheme: encryption scheme that
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Comprises of three functions:
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Fully Homomorphic Encryption (FHE)

Many homomorphic encryption schemes:
* EIGamal: f(my, my) = mymy
e Paillier: f(my,my) = my + my
* Goldwasser-Micali: f(my, my) = my @ my

Fully homomorphic encryption: homomorphic with respect
to two operations: addition and multiplication

* Can evaluate Boolean and arithmetic circuits

* [BGNO5]: one multiplication, many additions

* [Gen09]: first FHE construction from lattices



Fully Homomorphic Encryption

lC"(f)
c; = Encyr(my)
C

Eval ]—3> C(f): circuit for some function f
c; = Encyr(my)
ekT

Correctness: Dec, (Evalf(ek, C1, cz)) = f(mq,m,)

Circuit Privacy: Encpk((?(ml,mz)) ~ Eval¢(ek, ¢y, ¢;)

Compactness: Decryption circuit has size at most poly(4)



In Theory: Secure Computation using FHE

Enc(pk,"cat")

Enc(pk, Search("cat"))

Represent “Search” function as a circuit and evaluate
homomorphically



In Practice: Secure Computation using FHE

Enc(pk,"cat")

Request timed out

FHE schemes have tremendous overhead



Somewhat Homomorphic Encryption (SWHE)

FHE supports arbitrary number of operations

Compromise: Support a limited number of
operations (e.g., evaluate circuits of a certain
depth)

* Somewhat/leveled homomorphic encryption



Brakerski’s SWHE [Bral2]

Operates over a polynomial ring: R = Z[x]/®,,,(x)
Plaintext and ciphertext are vectors of ring elements

Homomorphic multiplication much more expensive

than homomorphic addition
* Can evaluate low degree polynomials over encrypted data



Application: Statistical Analysis

Cloud aggregates
and summarizes
+ °
Skl patient data
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Local hospitals
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Security Model Researcher does not
learn individual patient

data other than what is

c explicitly leaked by
(Circuit Privacy) nodel
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Cloud does not
learn patient data (Semantic Security)
or model



Application: Statistical Analysis

Given n vectors x4, ..., X, (e.g., patient profiles), define

X to be the matrix with rows x4, ..., x,,

— 1vn
* Mean: u = —2i=1%;

» Covariance: Xy = % (MXTX — (mw)(nu)"h)
Division difficult to support, so represent as rationals

Depth O circuit for mean, depth 1 for covariance



Application: Statistical Analysis

Can also perform linear regression on encrypted data

Given design matrix X and response vector y, evaluate
normal equations:

0 =X"X)"1xTy
Invert over Q using Cramer’s rule

Depth n for n dimensional data



Batch Computation [SV11]

Encrypt + process array of values at no extra cost

Main intuition: Chinese Remainder Theorem

[ Plaintext Space: R), = Zy|[x]/®, (x) }

ST

Choose p such that R), splits into smaller rings: R, =®;=; R,




Batch Computation

Encrypt + process array of values at no extra cost:
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In practice: = 5000 slots



Batch Computation

Can also permute slots (via Frobenius automorphisms) [BGV12,
GHS12]




Batch Inner Products

Statistical analysis reduces to computing inner products:
1n\" /1
2 0
2| | o =1-14+42-04+3:-04+4-1=5
4 1

Naive method: Encrypt each component separately.

Requires 4 multiplications!



Batch Inner Products

Batch inner product:
encrypt multiple
components in each
ciphertext.
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Requires 1 multiplication!

Not quite what
we wanted!




Batch Inner Products

Result of batch multiplication:

Desired result:

~ OO |-




Batch Inner Products

Use automorphisms to sum up components:
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Batch Inner Products

Use automorphisms to sum up components:
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Batch Inner Products

(" )

1 multiplication
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Batches of size n logn additions
\_ y,




Time to Compute Mean and Covariance over
Encrypted Data (Dimension 4)
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Time (minutes)
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Time to Perform Linear Regression on Encrypted Data
(2 Dimensions)
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Time (minutes)
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Time to Perform Linear Regression on Encrypted Data
(260,000 Data Points)
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Conclusions

SWHE allows computation of circuits of low-depth
Batching enables scaling to nontrivial datasets

Can perform statistical analysis on encrypted data
with “reasonable” overhead



Open Source FHE Implementation:

https://github.com/dwud4/fhe-si



