
Privacy-Preserving Shortest 
Path Computation

David Wu

Joint work with Joe Zimmerman, Jeremy Planul, and 
John Mitchell



Navigation

current
position

desired
destination



Navigation: A Solved Problem?

directions from current 
location to Fisherman’s 

Wharf

Issue: cloud learns where you are 
and where you are going!



“Trivial” Solution

Give me the entire 
map!



“Trivial” Solution

Give me the entire map!

Pros: lots of privacy (for the client)

Cons:
• routing information 

constantly changing
• map provider doesn’t 

want to just give away 
map for “free”



Private Shortest Paths

AT&T park to 
Fisherman’s 

Wharf

protocol

Client Privacy: server does not 
learn source or destination

Server Privacy: client only learns 
route from source to destination



Private Shortest Paths

Model: assume client knows topology of the network (e.g., road 
network from OpenStreetMap)

Weights on edges (e.g., travel times) are hidden

Client Privacy: Server does not learn client’s source 𝑠 or 
destination 𝑡

Server Privacy: Client only learns 𝑠 → 𝑡 shortest path and nothing 
about weights of other edges not in shortest path



Straw Man Solution

Suppose road network has 𝑛 nodes

Construct 𝑛 × 𝑛 database:

𝑟11 𝑟12 ⋯ 𝑟1𝑛
𝑟21 𝑟22 ⋯ 𝑟2𝑛
⋮ ⋮ ⋱ ⋮
𝑟𝑛1 𝑟𝑛2 ⋯ 𝑟𝑛𝑛

record 𝑟𝑠𝑡: shortest path 
from node 𝑠 to node 𝑡

(e.g., 𝑠 → 𝑣1 → 𝑣2 → 𝑡)

Shortest Path Protocol: 
privately retrieve record 

𝑟𝑠𝑡 from database



(Strong) Private Information Retrieval (SPIR)

cloud database

record 𝑖

SPIR 
protocol

???

Client Privacy: server does 
not learn 𝑖

Server Privacy: client only 
learns record 𝑖



(Strong) Private Information Retrieval (SPIR)

cloud 
database

𝑖

SPIR 
protocol

???

• single-server PIR: solutions 
exist from additive 
homomorphism [KO97]

• SPIR: construction from PIR 
+ OT on short secrets [NP05]

• computation lower bound: 
linear in size of database

query on 106 records = 106 public key operations = several minutes 
of (single-threaded) computation



Finding Structure

Straw man solution requires SPIR on databases with 𝒏𝟐 records –
quadratic in number of nodes in the graph – rather impractical!

Observation 1: Nodes in road 
networks tend to have low 

(constant) degree



Finding Structure

Typically, an intersection has up to four neighbors (for the four 
cardinal directions)

For each node in the 
network, associate each 

neighbor with a direction 
(unique index)



Finding Structure

Next-hop routing matrix for graph with 𝑛 nodes:

𝑟11 𝑟12 ⋯ 𝑟1𝑛
𝑟21 𝑟22 ⋯ 𝑟2𝑛
⋮ ⋮ ⋱ ⋮
𝑟𝑛1 𝑟𝑛2 ⋯ 𝑟𝑛𝑛

𝑟𝑠𝑡: index of neighbor to take on 
first hop on shortest path from 

node 𝑠 to node 𝑡

Shortest path protocol: 
iteratively retrieve the next hop 

in shortest path



Finding Structure

0

4

1

2 3

Routing from 0 to 4:
1. Query 𝑟04: North
2. Query 𝑟14: North
3. Query 𝑟24: East
4. Query 𝑟34: East

But same problem as 
before: SPIR on database 

with 𝑛2 elements



Finding Structure

Observation 2: Road 
networks have geometric 

structure

Nodes above hyperplane: 
first hop is north or east

Nodes below hyperplane: 
first hop is south or west



Finding Structure

If each node has four neighbors, 
can specify neighbors with two 
bits:

• 1st bit: encode direction 
along NW/SE axis

• 2nd bit: encode direction 
along NE/SW axis

Examples:
• North: 00
• East: 10
• South: 11
• West: 01



A Compressible Structure

Let 𝑀 NE and 𝑀(NW) be next-hop matrices along NE and NW axis 

(entries in 𝑀(NE) and 𝑀 NW are bits)

Objective: for 𝑖 ∈ NE, NW , find matrices 𝐴 𝑖 , 𝐵 𝑖 such that

𝑀 𝑖 = sign 𝐴 𝑖 ⋅ 𝐵 𝑖



A Compressible Structure

Objective: for 𝑖 ∈ NE, NW , find matrices 𝐴 𝑖 , 𝐵 𝑖 such that

𝑀 𝑖 = sign 𝐴 𝑖 ⋅ 𝐵 𝑖

𝐴

𝐵𝑇

𝑀

𝑀𝑠𝑡: direction 
from 𝑠 on 𝑠 → 𝑡

shortest path 
𝐴𝑠: 𝑠th row of 

“source matrix”

𝐵𝑡: 𝑡
th row of 

“destination matrix” Computing next-hop 
reduces to computing inner 

products

Index of row in 𝐴 only 
depend on source, index of 

row in 𝐵 only depend on 
destination



A Compressible Structure

0

1000

2000

3000

4000

5000

6000

7000

0 1000 2000 3000 4000 5000 6000 7000 8000

Si
ze

 o
f 

R
ep

re
se

n
ta

ti
o

n
 (

K
B

)

Nodes in Graph

Original Representation Compressed Representation

Over 10x 
compression!

Only require 26 
columns in compressed 

representation!



An Iterative Shortest-Path Protocol

SPIR queries on databases 
with 𝒏 records

Problem: rows and columns 
of 𝐴, 𝐵 reveal more 

information than desired

To learn next-hop on 𝑠 → 𝑡 shortest path:

1. Use SPIR to obtain 𝑠th row of 𝐴 NE and 𝐴 NW

2. Use SPIR to obtain 𝑡th row of 𝐵 NE and 𝐵 NW

3. Compute

𝑀𝑠𝑡
NE = sign 𝐴𝑠

NE , 𝐵𝑡
NE and 𝑀𝑠𝑡

NW = sign 𝐴𝑠
NW , 𝐵𝑡

NW



Affine Encodings and Arithmetic Circuits

Goal: Reveal inner product without revealing vectors

Idea: Use a “garbled” arithmetic circuit (affine encodings) [AIK14]

Example: Encoding of addition circuit 𝑓 𝑎, 𝑏 = 𝑎 + 𝑏 ∈ 𝔽𝑝:

• Encoding of 𝑎, 𝑏 given by 𝑎 + 𝑟, 𝑏 − 𝑟 for random 𝑟 ∈ 𝔽𝑝
• Encodings (𝑎 + 𝑟, 𝑏 − 𝑟) reveal 𝑎 + 𝑏 and nothing more

Solution: SPIR on arithmetic circuit encodings



An Iterative Shortest-Path Protocol

To learn next-hop on 𝑠 → 𝑡 shortest path:

1. Use SPIR to obtain encodings of 𝑠th row of 𝐴 NE and 𝐴 NW

2. Use SPIR to obtain encodings of 𝑡th row of 𝐵 NE and 𝐵 NW

3. Evaluate inner products 𝐴𝑠
NE

, 𝐵𝑡
NE

and 𝐴𝑠
NW

, 𝐵𝑡
NW

4. Compute 𝑀𝑠𝑡
NE

and 𝑀𝑠𝑡
NW

(signs of inner products)

Affine encodings hide source and 
destination matrices, but inner 

products reveal too much information



Thresholding via Garbled Circuits

Goal: Reveal only the sign of the inner product

Solution: Blind inner product and evaluate the sign function using 
a garbled circuit [Yao86, BHR12]

• Instead of 𝑥, 𝑦 , compute 𝛼 𝑥, 𝑦 + 𝛽 for random 𝛼, 𝛽 ∈ 𝔽𝑝
• Use garbled circuit to evaluate function

𝑔 𝑧, 𝛼, 𝛽 = sign 𝛼−1 𝑧 − 𝛽 mod 𝑝

Client input: 𝑧

Server input: 𝛼, 𝛽
Input privacy of garbled circuits hide 𝛼, 𝛽



An Iterative Shortest-Path Protocol

To learn next-hop on 𝑠 → 𝑡 shortest path:

1. Use SPIR to obtain encodings of 𝑠th row of 𝐴 NE and 𝐴 NW

2. Use SPIR to obtain encodings of 𝑡th row of 𝐵 NE and 𝐵 NW

3. Evaluate to obtain blinded inner products 𝑧 NE and 𝑧 NW

4. Use garbled circuits to compute 𝑀𝑠𝑡
NE

and 𝑀𝑠𝑡
NW

Semi-honest secure!
But malicious client can make 

inconsistent queries…



Benchmarks

Preprocessed city maps from OpenStreetMap



Benchmarks

City
Number 
of Nodes

Time per Round 
(s)

Bandwidth 
(KB)

San Francisco 1830 1.42 ± 0.09 88.24

Washington D.C. 2490 1.69 ± 0.22 90.00

Dallas 4993 2.91 ± 0.18 95.02

Los Angeles 7010 4.75 ± 0.14 100.54

Timing and bandwidth for each round of the online 
protocol (with protection against malicious clients)



Benchmarks

Most expensive component of protocol is sending garbled circuits (≈ 520
KB per circuit), but this can be done prior to the online (navigation) phase

Each round of the protocol completes in a few seconds (bottleneck is PIR 
protocol); fast enough for real-time navigation if it takes more than a few 
seconds between intersections (generally true)

Modest amount of bandwidth (around 100 KB) per round



Conclusions

Problem: privacy-preserving navigation

Routing information for road networks are compressible!
• Optimization-based compression technique achieves over 10x 

compression of next-hop matrices

Compressed routing matrix lends itself to iterative shortest-path protocol
• Computing the shortest path reduces to computing sign of inner 

product
• Leverage combination of arithmetic circuits + Boolean circuits



Questions?


