
Privately Evaluating Decision
Trees and Random Forests

David Wu

Joint work with Tony Feng, Michael Naehrig, and Kristin
Lauter

December, 2014

Motivations

Taxes…

Here is my financial data:
[…]

You qualify for these
deductions: […] classification

The Power of the Cloud

Advantage of the cloud: big data

But can now the cloud be trusted?
• Financial Records
•Medical Records
• Legal Records
•Personal Information

Privacy-Preserving Machine Learning

Leverage the power and data available in cloud-
based services

Preserve user privacy

Scope of This Talk

Consider one particular model: decision trees and
their generalization, random forests

Assume that the server already has the model:
focus on private evaluation of models

Decision Trees

N

Y N

𝑥1 ≤ 5 𝑥1 > 5

𝑥2 ≤ 2 𝑥2 > 2

• Nonlinear models for
regression or classification

• Consists of a series of
decision variables (tests on
the feature vector)

• Evaluation corresponds to
tree traversal

internal nodes or
decision nodes

leaf nodes

Random Forests

• Train many decision trees
on random subsets of the
features

• Output is average (majority)
of outputs of individual
decision trees for regression
(classification)

• Reduces variance of model

Security Model

Semi-honest adversary: follow the protocol as written,
but may try to learn additional information from the
protocol trace (honest-but-curious)

Malicious adversary: can deviate arbitrarily from the
protocol to satisfy its objectives

Server-Side and Client-Side Privacy

Privacy for the client: server learns no information
about the client’s query

Privacy for the server: client does not learn anything
about the model other than what s/he already learns
from the output

Formally, we use the real-world / ideal-world paradigm

Comparison Protocol

Comparison Protocol [DGK07, BPTG14]

Recall decision tree setting:
• Server has a decision tree (the model)
• Client has feature vector

Comparison Protocol [DGK07, BPTG14]

Basic building block for decision trees:
evaluating comparisons of the form

𝟏{𝑥𝑖𝑘 < 𝑡𝑘}

threshold
(server’s input)

index into feature vector
(𝑥𝑖𝑘 is the client’s input)

Comparison Protocol [DGK07, BPTG14]

client input: 𝑥 server input: 𝑦

comparison protocol

Desired functionality:
Server learns an encryption of comparison bit (under the client’s

public key), client learns nothing

Back to the Comparison Protocol…

𝑥 = 𝑥1 𝑥2 𝑥3 𝑥4 ⋯ 𝑥𝑛

𝑦 = 𝑦1 𝑦2 𝑦3 𝑦4 ⋯ 𝑦𝑛

binary
representations

Take two positive integers 𝑥, 𝑦 and consider their binary
representations

Comparison Protocol [DGK07, BPTG14]

𝑥 = 𝑥1 𝑥2 𝑥3 𝑥4 ⋯ 𝑥𝑛

𝑦 = 𝑦1 𝑦2 𝑦3 𝑦4 ⋯ 𝑦𝑛

binary
representations

Observation:
𝑥 > 𝑦 if there is an index such that 𝑥𝑖 > 𝑦𝑖 and for all 𝑗 < 𝑖, 𝑥𝑗 = 𝑦𝑗

common prefix differing index: 𝑥3 > 𝑦3

Comparison Protocol [DGK07, BPTG14]

client input: 𝑥 server input: 𝑦

Enc 𝑥1 ⋯Enc(𝑥𝑛)

Step 1: Client sends bitwise encryptions to server

Comparison Protocol [DGK07, BPTG14]

server input: 𝑦

Step 2: Server chooses 𝑠
$
−1,1 and

homomorphically computes

Enc 𝑥𝑖 − 𝑦𝑖 + 𝑠 + 3
𝑗<𝑖
𝑥𝑗⊕𝑦𝑗

Note: encryption scheme needs to be additively homomorphic

Comparison Protocol [DGK07, BPTG14]

Term server computes:

𝑤𝑖 ≔ 𝑥𝑖 − 𝑦𝑖 + 𝑠 + 3
𝑗<𝑖
𝑥𝑗⊕𝑦𝑗

Always non-negative,
and if non-zero, then
𝑤𝑖 > 0

If 𝑠 = 1, 𝑥𝑖 − 𝑦𝑖 + 𝑠 = 0 if and
only if 𝑥𝑖 < 𝑦𝑖

If 𝑠 = −1, 𝑥𝑖 − 𝑦𝑖 + 𝑠 = 0 if and
only if 𝑥𝑖 > 𝑦𝑖

Comparison Protocol [DGK07, BPTG14]

Term server computes:

𝑤𝑖 ≔ 𝑥𝑖 − 𝑦𝑖 + 𝑠 + 3
𝑗<𝑖
𝑥𝑗⊕𝑦𝑗

Recall observation:
𝑥 > 𝑦 if and only if there is 𝑖 such that 𝑥𝑖 > 𝑦𝑖 and for all 𝑗 < 𝑖, 𝑥𝑗 = 𝑦𝑗

if 𝑠 = −1, 𝑥 > 𝑦 if and only if there exists 𝑖 such that 𝑤𝑖 = 0
if 𝑠 = 1, 𝑥 < 𝑦 if and only if there exists 𝑖 such that 𝑤𝑖 = 0

Comparison Protocol [DGK07, BPTG14]

client input: 𝑥 server input: 𝑦

Enc 𝑤1 ⋯Enc(𝑤𝑛)

Step 3: Server sends back Enc 𝑤1 ⋯Enc(𝑤𝑛)

Technical detail: Server first multiplies by a random non-zero element

Comparison Protocol [DGK07, BPTG14]

client input: 𝑥 server input: 𝑦

Enc(𝜆)

Step 4: Client decrypts the 𝑤𝑖 and sends back Enc(𝜆) where
𝜆 = 1 only if there exists 𝑖 such that 𝑤𝑖 = 0 and 0 otherwise

Comparison Protocol [DGK07, BPTG14]

server input: 𝑦

Step 5: Given Enc 𝜆 and 𝑠, server can
compute result of comparison:

Enc 𝟏 𝑥 < 𝑦 .

Recall:
if 𝑠 = −1, 𝑥 > 𝑦 if and only if there exists 𝑖 such that 𝑤𝑖 = 0
if 𝑠 = 1, 𝑥 < 𝑦 if and only if there exists 𝑖 such that 𝑤𝑖 = 0

Semi-honest Secure Protocol
Key Idea: suppose we give
the client 𝑏1, 𝑏2, and the
structure of the tree

Then, client can compute
the index of the outcome

𝑐3

𝑐1 𝑐2

𝑏1 = 0 𝑏1 = 1

𝑏2 = 0 𝑏2 = 1

𝑏1

𝑏2

Problem: Leaks the structure of the tree!

Semi-honest Secure Protocol
Suppose client knew the index of the outcome

Problem reduces to well-studied problem: oblivious
transfer

Oblivious Transfer (OT)

client’s input:
index 𝑖

server’s input:
database 𝑚1, … ,𝑚𝑛

oblivious transfer

Desired functionality:
Client learns 𝑚𝑖 and nothing else, server learns nothing

Semi-honest Secure Protocol
Suppose client knew the
index of the outcome

Problem reduces to OT:
treat leaves as database,
client knows index

𝑐3

𝑐1 𝑐2

𝑏1

𝑏2

𝑐1 𝑐2 𝑐3
leaves become

OT database
Problem: Need
to hide structure!

Hiding the Structure

1. Padding: Insert “dummy” nodes to obtain
complete tree

𝑐3

𝑐1 𝑐2

𝑏1 = 0 𝑏1 = 1

𝑏2 = 0 𝑏2 = 1

𝑏1

𝑏2

𝑐1 𝑐2

𝑏1 = 0 𝑏1 = 1

𝑏2 = 0 𝑏2 = 1

𝑏1

𝑏2

𝑐3 𝑐3

𝑏3 = 0 𝑏3 = 1
𝑏3

Hiding the Structure
2. Randomization: Randomly flip decision variables:

 𝑏𝑖 ≔ 1 − 𝑏𝑖

𝑐1 𝑐2

𝑏1 = 0 𝑏1 = 1

𝑏2 = 0 𝑏2 = 1

𝑏1

𝑏2

𝑐3 𝑐3

𝑏3 = 0 𝑏3 = 1
𝑏3

𝑐3 𝑐3

𝑏3 = 0 𝑏3 = 1
𝑏3

 𝑏1 = 0 𝑏1 = 1
 𝑏1

𝑐1 𝑐2

𝑏2 = 0 𝑏2 = 1
𝑏2

node flipped

Hiding the Structure: Randomization

Choose
𝑠 = 𝑠1𝑠2…𝑠𝑚 {0,1}

𝑚

uniformly at random

If 𝑠𝑖 = 1 then flip
𝑏𝑖 ↦ 1 − 𝑏𝑖

Semi-honest Secure Protocol

1. Server: Pad and randomize the decision tree
2. Server & Client: Engage in comparison protocol to

compute each 𝑏𝑖
3. Client: Compute the index 𝑗 of the leaf node
4. Client & Server: Engage in OT to obtain 𝑐𝑗

Theorem. This protocol is secure against semi-honest
adversaries.

From Trees to Forests
Naïve Solution: Evaluate each tree independently using the
protocol

Problem: Reveals more information about the model than
just the classification

From Trees to Forests
Better Solution: Use an additive secret-sharing to hide
intermediate results

add 𝑟1 to each
classification

add 𝑟2 to each
classification

add 𝑟3 to each
classification

Evaluate each tree as
before, but each

individual evaluation
now looks random

From Trees to Forests
Better Solution: Use an additive secret-sharing to hide
intermediate results

add 𝑟1 to each
classification

add 𝑟2 to each
classification

add 𝑟3 to each
classification

Reveal 𝑖 𝑟𝑖 to the
client, which allows
client to learn sum

(mean) of predicted
values

Implementation

Implementation

Implemented private decision tree + random
forest protocol (semi-honest security)

Two primary components:

• Comparison protocol

• Oblivious Transfer

Implementation

Comparison protocol instantiated with
exponential variant of ElGamal encryption

• Fast instantiation using elliptic curves

Oblivious transfer based on Naor-Pinkas with OT
Extensions

Decision Tree Evaluation on ECG Data

Security Level
Computation (s)

Bandwidth (KB)
Client Server

[BFK+09] 80 1.765 4.235 112.2

[BPGT14] 80 1.485 2.595 4272

This work 128 0.091 0.188 101.9

Experimental Parameters:
• Data Dimension: 6
• Depth of Decision Tree: 4
• Number of Comparisons: 6

Performance for Complete Decision Trees

One-Sided Security (Malicious Model)

Privacy of the server’s model is ensured against a
malicious client

Privacy of the client’s input is ensured against a malicious
server

However, client not guaranteed to receive “correct”
answer

Extensions to One-Sided Security

1. Server: Pad and randomize the
decision tree

2. Server & Client: Engage in
comparison protocol to compute
each 𝑏𝑖

3. Client: Compute the index 𝑗 of the
leaf node containing the response

4. Client & Server: Engage in OT to
obtain 𝑐𝑗

Client might cheat during comparison
protocol (for example, encrypt a value
that is not 0/1)

Client might cheat by requesting a
different index

Possible attacks on semi-honest protocol:

Solution: zero-knowledge proofs

Solution: “conditional” oblivious
transfer

Conclusion
Simple protocols for decision tree evaluation in both semi-
honest and malicious setting

Semi-honest decision tree / random forest evaluation
protocols are fairly practical

