Privately Evaluating Decision
Trees and Random Forests

David Wu

Joint work with Tony Feng, Michael Naehrig, and Kristin
Lauter

December, 2014

Motivations

O Here is my financial data:

[...]
CE—

You qualify for these
deductions: [...]

classification

The Power of the Cloud

Advantage of the cloud: big data

But can now the cloud be trusted?
* Financial Records
* Medical Records
* Legal Records
* Personal Information

Privacy-Preserving Machine Learning

Leverage the power and data available in cloud-
based services

Preserve user privacy

Scope of This Talk

Consider one particular model: decision trees and
their generalization, random forests

Assume that the server already has the model:
focus on private evaluation of models

Decision Trees

internal nodes or
decision nodes \

X1 >5

leaf nodes

Nonlinear models for
regression or classification
Consists of a series of
decision variables (tests on
the feature vector)
Evaluation corresponds to
tree traversal

I I I I S S .y,

o

Random Forests

I I I S S S

Train many decision trees
on random subsets of the
features

Output is average (majority)
of outputs of individual
decision trees for regression
(classification)

Reduces variance of model

Security Model

Semi-honest adversary: follow the protocol as written,
but may try to learn additional information from the
protocol trace (honest-but-curious)

Malicious adversary: can deviate arbitrarily from the
protocol to satisfy its objectives

Server-Side and Client-Side Privacy

Privacy for the client: server learns no information
about the client’s query

Privacy for the server: client does not learn anything
about the model other than what s/he already learns
from the output

Formally, we use the real-world / ideal-world paradigm

Comparison Protocol

Comparison Protocol [DGKO7, BPTG14]

Recall decision tree setting:
* Server has a decision tree (the model)
* Client has feature vector

Comparison Protocol [DGKO7, BPTG14]

Basic building block for decision trees:
evaluating comparisons of the form

1{xik < tk}
index into feature vector threshold

(x;, is the client’sinput) (server’s input)

Comparison Protocol [DGKO7, BPTG14]

comparison protocol

client input: x server input: y

Desired functionality:
Server learns an encryption of comparison bit (under the client’s
public key), client learns nothing

Back to the Comparison Protocol...

O e A I .

representations
[)’ 113’ 213’ 31)’41 IYn}

Take two positive integers x, y and consider their binary
representations

Comparison Protocol [DGKO7, BPTG14]
-
N o P R

l | : representations
Y = [Y1IYZI_)’EIY4I“‘I%}
AN

TR

common prefix differing index: x3 > vy,

Observation:
x >y if thereis an index such that x; > y; and forall j < i, x; = y;

Comparison Protocol [DGKO7, BPTG14]

client input: x server input: y

Step 1: Client sends bitwise encryptions to server

Comparison Protocol [DGKO7, BPTG14]

$
Step 2: Server chooses s <« {—1,1} and
homomorphically computes

Enc (xi Y+ s+3 2 (Xj o Yj)) server input: y
j<i

Note: encryption scheme needs to be additively homomorphic

Comparison Protocol [DGKO7, BPTG14]

Term server computes:

fs=1,x; —y; + s = 0if and

only if x; < v; Always non-negative,

and if non-zero, then
Ifs=.—1,xl-—yl-+s=0ifand Wi>0
only if x; > y;

Comparison Protocol [DGKO7, BPTG14]

Term server computes:

fmmm |
Wi ZIxL_Yi_I'SLHBZ, (xJ 69y])l
b e - | —j<i)

Recall observation:
x >y if and only if there is i such that x; > y; and forall j <, x; = y;

if s = —1, x > yif and only if there exists i such that w; = 0
ifs =1, x < yifandonlyif there exists i such that w; = 0

Comparison Protocol [DGKO7, BPTG14]

clientinput: x server input: y

Step 3: Server sends back Enc(w;) --- Enc(w;,)

Technical detail: Server first multiplies by a random non-zero element

Comparison Protocol [DGKO7, BPTG14]

Enc(A)

clientinput: x server input: y

Step 4: Client decrypts the w; and sends back Enc(4) where
A = 1 only if there exists i such that w; = 0 and 0 otherwise

Comparison Protocol [DGKO7, BPTG14]

Step 5: Given Enc(4) and s, server can
compute result of comparison:

Enc(1{x < y}).

server input: y

Recall:

if s = —1, x > yif and only if there exists i such thatw; =0
if s =1, x < yifand only if there exists i such thatw; =0

Semi-honest Secure Protocol

Key Idea: suppose we give
the client b4, b,, and the
structure of the tree

Then, client can compute
the index of the outcome

Problem: Leaks the structure of the tree!

Semi-honest Secure Protocol

Suppose client knew the index of the outcome

Problem reduces to well-studied problem: oblivious
transfer

Oblivious Transfer (OT)

oblivious transfer

client’s input: server’s input:
index i database {m4, ..., m,,}

Desired functionality:
Client learns m; and nothing else, server learns nothing

Semi-honest Secure Protocol

Suppose client knew the @
index of the outcome @

Problem reduces to OT:

treat leaves as database,
client knows index ‘

Problem: Need leaves become = ~1- "1~ —"
ey leyles
to hide structure! OT database v f-L A L2

Hiding the Structure

1. Padding: Insert “dummy” nodes to obtain
complete tree

Hiding the Structure

2. Randomization: Randomly flip decision variables:

bi = 1= bi node flipped

Hiding the Structure: Randomization

Choose
S = 8518y ...Sy < {0,1}""
uniformly at random

If s; = 1 then flip
bi - 1 — bi

Semi-honest Secure Protocol

1. Server: Pad and randomize the decision tree
2. Server & Client: Engage in comparison protocol to

compute each b;
3. Client: Compute the index j of the leaf node

4. Client & Server: Engage in OT to obtain ¢;

Theorem. This protocol is secure against semi-honest
adversaries.

From Trees to Forests

Naive Solution: Evaluate each tree independently using the
protocol

Problem: Reveals more information about the model than
just the classification

From Trees to Forests

Better Solution: Use an additive secret-sharing to hide
intermediate results

()\ Evaluate each tree as
| ‘;é‘ ‘/O\' : before, but each

: (individual evaluation
\]

now looks random

add r; to each add r, to each add r5 to each
classification classification classification

From Trees to Forests

Better Solution: Use an additive secret-sharing to hide
intermediate results

Reveal);; 1; to the

{ \

| I client, which allows
I ‘/O\' I client to learn sum
'\ " (mean) of predicted

________________ - values

add r; to each add r, to each add r5 to each
classification classification classification

Implementation

Implementation

Implemented private decision tree + random
forest protocol (semi-honest security)

Two primary components:
* Comparison protocol
* Oblivious Transfer

Implementation

Comparison protocol instantiated with
exponential variant of EIGamal encryption

* Fast instantiation using elliptic curves

Oblivious transfer based on Naor-Pinkas with OT
Extensions

Decision Tree Evaluation on ECG Data

_ Computation (s) ,
Security Level , Bandwidth (KB)
Client Server
[BFK*09] 80 1.765 4.235 112.2
[BPGT14] 30 1.485 2.595 4272
This work 128 0.091 0.188 101.9

Experimental Parameters:
* Data Dimension: 6
* Depth of Decision Tree: 4
* Number of Comparisons: 6

Performance for Complete Decision Trees

350 140
» 300 120
£ 250 100 5
= 200 80 <
[e e
& 150 60 3
= S
2 100 40 3
= 0
S 50 20
0 —mme=s]
4 6 8 10 12 14
Depth of Decision Tree
—— Client Computation -—@— Server Computation

- «=J=« Client Upload - @ =Server Upload

One-Sided Security (Malicious Model)

Privacy of the server’s model is ensured against a
malicious client

Privacy of the client’s input is ensured against a malicious
server

However, client not guaranteed to receive “correct”
answer

Extensions to One-Sided Security

Possible attacks on semi-honest protocol:

1. Server: Pad and randomize the
decision tree

2. Server & Client: Engage in
comparison protocol to compute
each b;

3. Client: Compute the index j of the
leaf node containing the response
4. Client & Server: Engage in OT to
obtain ¢;

Client might cheat during comparison
protocol (for example, encrypt a value
that is not 0/1)

Solution: zero-knowledge proofs

Client might cheat by requesting a
different index

Solution: “conditional” oblivious
transfer

Conclusion

Simple protocols for decision tree evaluation in both semi-
honest and malicious setting

Semi-honest decision tree / random forest evaluation
protocols are fairly practical

