Silent Threshold Cryptography from Pairings

David Wu
UT Austin
January 26, 2026

NIST Workshop on Multi-Party Threshold Schemes

joint work with Brent Waters

Threshold Cryptography

[Des87, Fra89, DF89]

master secret key

Typical setup: split a cryptographic _/M

key into many shares

sk, sk, sk, sk sk shares

A A A A
e @ 8 A 8 &

Only an authorized set of parties can perform a target action (e.g., signing, decryption, etc.)

Who Generates the Shares?

master secret key

Typical setup: split a cryptographic _/M

key into many shares

sk, sk, sk, sk sk shares

A A A A
e @ 8 A 8 &

Only an authorized set of parties can perform a target action (e.g., signing, decryption, etc.)

Who Generates the Shares?

Option 2: Distributed key generation

sk
"SR

sk o’@%\
7 @ /& o
N

o
- 8—a

Requires parties to coordinate and interact

Option 1: Trusted dealer

o o T T ®

Needs a trusted party

Redeal shares if policy changes (e.g., new user joins) Rerun setup if policy changes (e.g., new user joins)

Silent Threshold Cryptography

[MRVWZ21, DCXNBR23, GIMSW24]

Skl Skz Sk3 SkS Sk6

o & 7 &

2 & 8 8

o O .
A pk; & pk, @ pks A pks @ pke

Users independently generate their own public key pk; and secret key sk;

a) Can deterministically aggregate any set of
a rk, y aggregate any

public keys together with a policy
k I
kﬂ P 5)

arbitrary collection of
public keys Individual secret key sk; is each user’s share

Master public key mpk serves as the key for
the threshold cryptosystem for the chosen
quorum

Example: Threshold Signatures with Silent Setup

[MRVWZ21, DCXNBR23, GJMSW24]

Users generate their own keys (relative to a common reference string)

KeyGen(crs) — (pk, sk)

Signing key sk can be used to sign messages

Sign(sk, m) — 0 (o must verify relative to pk)

Aggregate(crs, {pK;}ies, T) - (mpk, ht)

4)
ﬂ ka a
k —
kﬂ P¥s) -
arbitrary collection of policy aggregated public key
public keys

T': target threshold

mpk: aggregated verification key for quorum

ht: aggregation hint

Example: Threshold Signatures with Silent Setup

[MRVWZ21, DCXNBR23, GJMSW24]

Users generate their own keys (relative to a common reference string)

O [0"" Sk} KeyGen(crs) — (pk, sk)

A k

" Signing key sk can be used to sign messages
Q Sign(sk, m) — 0 (o must verify relative to pk)

Aggregate(crs, {pK;};cs, T) = (mpk, ht) Efficiency: |0, | and signature verification time
are independent of number of users

AggSig(ht, {0;};c5') = Oagg

) D

Oagg IS @ signature on m under mpk Verify(mpk, m, aagg) =1

Security: adversary with fewer than T signatures
on m cannot forge signature with respect to mpk

Silent Threshold Cryptography

[MRVWZ21, DCXNBR23, GIMSW24]

Skl Skz Sk3 SkS Sk6

MO {O o

2282872

A pk; @A pk; A pks A pks A pkg

Users independently generate their own public key pk; and secret key sk;

“Threshold cryptography where users choose their own shares”

Well-suited for decentralized settings: no need for trusted dealer, users do not need to be aware of each other
Supports dynamic policies (i.e., shares are not tied to a policy); users do not need to be aware of policy

Does rely on common reference string (CRS), which requires a one-time setup (rather than per-policy setup)

Silent Threshold Signatures

Scheme Policy Family Assumption |crs| o] |Oagg]
Generic (SNARK) Boolean circuit generic bilinear group 0,(N) |G| 3|G]

Generic (BARG) Boolean circuit k-Lin (pairing) 0,(N) |G| poly(4) - |G|
[DCXNBR23] weighted threshold generic bilinear group 0,(N) |G| 8| G|
[GIMSW24] weighted threshold generic bilinear group 0,(N) |G| 9|G| + 5|F|

Relatively few constructions (other than via generic tools like SNARKs or BARGS)

Silent Threshold Signatures

Scheme Policy Family Assumption |crs| o] |Oagg]
Generic (SNARK) Boolean circuit generic bilinear group 0,(N) |G| 3|G]
Generic (BARG) Boolean circuit k-Lin (pairing) 0,(N) |G| poly(4) - |G|
[DCXNBR23] weighted threshold generic bilinear group 0,(N) |G| 8| G|
[GIMSW24] weighted threshold generic bilinear group 0,(N) |G| 9|G| + 5|F|

) monotone span program g-type assumption OA(NZ) 2| Gl 3| G|
This work

threshold g-type assumption 0,(NlogN) 2|G| 3|G]

Relatively few constructions (other than via generic tools like SNARKs or BARGS)

Existing constructions either have long signatures (super-constant number of group elements) or only shown
secure in the generic bilinear group model

In fact: all constructions with short signatures rely on some kind of SNARK machinery
(e.g., sum check, inner product arguments, etc.)

This work: a direct algebraic construction (no SNARK machinery)

Silent Threshold Signatures

Scheme Policy Family Assumption |crs| o] |Oagg]
Generic (SNARK) Boolean circuit generic bilinear group 0,(N) |G| 3|G]
Generic (BARG) Boolean circuit k-Lin (pairing) 0,(N) |G| poly(4) - |G|
[DCXNBR23] weighted threshold generic bilinear group 0,(N) |G| 8| G|
[GIMSW24] weighted threshold generic bilinear group 0,(N) |G| 9|G| + 5|F|

) monotone span program g-type assumption OA(NZ) 2| Gl 3| G|
This work

threshold g-type assumption 0,(NlogN) 2|G| 3|G]

Base signatures have two group elements, but

final signature is as short as that using a
pairing-based SNARK (e.g., [Gro16])

Silent Threshold Signatures

Scheme Policy Family Assumption |crs| o] |Oagg]
Generic (SNARK) Boolean circuit generic bilinear group 0,(N) |G| 3|G]
Generic (BARG) Boolean circuit k-Lin (pairing) 0,(N) |G| poly(4) - |G|
[DCXNBR23] weighted threshold generic bilinear group 0,(N) |G| 8| G|
[GIMSW24] weighted threshold generic bilinear group 0,(N) |G| 9|G| + 5|F|

) monotone span program g-type assumption OA(NZ) 2| Gl 3| G|
This work

threshold g-type assumption 0,(NlogN) 2|G| 3|G]

Drawback: larger CRS (quadratic
for general policies, quasi-linear
for threshold policies)

Can support general policies beyond Security in the

threshold policies (e.g., majority of

. plain model
majorities, monotone Boolean formulas)

Silent Threshold Encryption

Techniques directly generalize to setting of silent threshold public-key encryption

Scheme Policy Family Assumption |crs| |ct|

[RSY21, ADMSW24] threshold i0 + OWF/SSB None 0,(1)

[GKPW24] threshold generic bilinear group 0,(N) 9|@G|

[DJIWW?25] S-space read-once TM i0 + SSB 0,(1) 0,(2%)

This work monotone span program g-type assumption 0,(N?) 3|G| + |F|
threshold g-type assumption 0,(NlogN) 3|G| + |F]|

No generic SNARK-based solution in the case of encryption (except with extractable witness encryption)
For general policies, problem is challenging even with strong tools like witness encryption or obfuscation

This work: first construction for Boolean formulas and thresholds, but does need a large CRS

Starting Point: Boneh-Boyen Signatures

This talk: will focus just on signatures (same techniques work for encryption)

Builds on the Boneh-Boyen [BB04] pairing-based signature scheme (derived from an
identity-based encryption scheme)

sk: g% (a « Z,,) Conventlor\s ('FhIS talk): -
Symmetric prime-order pairing group (G, G)
vk: (e(g, 9), 1, h) Group order p

Generator g
wh <G Pairinge: G X G = Gr

Starting Point: Boneh-Boyen Signatures

This talk: will focus just on signatures (same techniques work for encryption)

Builds on the Boneh-Boyen [BB04] pairing-based signature scheme (derived from an
identity-based encryption scheme)

sk: g% (a « Zp) Sign message m € Z,: 1.Sampler « Z,
vk: (e(g,)%, u, h) 2. Compute “hash” of the message u""h

3. Output (g*(u"h)", g"
LG put (g“(u"h)", g")

“encryption of the signing key g* where the hash of the message u™ h is the public key”

Starting Point: Boneh-Boyen Signatures

This talk: will focus just on signatures (same techniques work for encryption)

Builds on the Boneh-Boyen [BB04] pairing-based signature scheme (derived from an
identity-based encryption scheme)

sk: g% (a « Z,) Signature onm € Z,: (g“(u™h)", g")
vk: (e(g,9)% u, h) iy Mp\T
Verification: check that e(g, g)% = elg.g (1 h))
u,h « G e(g"umh)

“decrypt in the target group via the pairing”

Construction Template

hash key

CRS: u,h

sk =a Each user chooses their own Boneh-
pk = e(g, g)a Boyen public key
o= (g*(Wm™h)", g") Signature is plain Boneh-Boyen signature

A ok, =e(g,9)*
B vk, =e(g, 9)*

Need to design two mechanismes:
1. Aggregate the user public keys relative to a policy
2. Aggregate signatures for users in the set

Aggregating Signatures

hash key

CRS: u,h

Suppose one has signature from each partyi € §

Oi1 0jp2
r - N\ A
We will rely on linear homomorphism: d; = (g% (u™h)", gt)

_ r~w'_ o Ui (4, M T e i (4 M INT ~:z.
O-agg,l — FL O-i,ll —_— gZLES l(u h)ZlES I — ngES l(u h) r - T‘L
ieS
Oagg2 = r 5;‘); = gzies i = g” Oagg = (Uagg,1»0agg,z) is a Boneh-Boyen
i€S signature on m with respect to e(g, g)%ies

Aggregating Signatures

hash key

CRS: u,h

Suppose one has signature from each partyi € §

~ ~

0i 1 0i 2 Verifier does not know

| | | A the set S!
We will rely on linear homomorphism: d; = (g% (u™h)", gt)

Aggregate signature (0,gg 1, 0agg2) Verifies with respect to [[;es e(g, g)*

Inefficient approach: Aggregate signature includes description of S so verifier can check that S satisfies
the policy, and if so, compute the aggregated verification key [[;cc e(g, g)*t and check the signature

Our approach: Derive aggregated key e(g, g)zieS % from the pairing implicitly

Aggregating Public Keys

hash key commitment key

CRS: |u,h g, .., gn

Aggregated public key is a Pedersen vector commitment to the users’ public keys
Sample ¢y, ..., ¢y < Z, and publish g1, ..., g°V in CRS (as the commitment key)
Aggregated public key is a commitment to «y, ..., a,

7 = gZiE[N] aiCj

Now need a mechanism to sub-select only the keys for the users i € S € [N] in the signing quorum

Solution: publish g/¢i terms in the CRS

Aggregating Public Keys

hash key commitment key

CRS: u,h g°1, ___’gCN’gl/Cl’ ___’gl/CN

Aggregated public key is a Pedersen vector commitment to the users’ public keys
Sample ¢y, ..., ¢y < Z, and publish g1, ..., g°V in CRS (as the commitment key)

Aggregated public key is a commitment to «y, ..., a,

7 = gZiE[N] a;iC;
Now need a mechanism to sub-select only the keys for the users i € S € [N] in the signing quorum
Solution: publish g/¢i terms in the CRS

e(z, gries/ i) = e(g, g)ies “i - e(g, g)Lic) LjesHiCi/ <]

set selector target quantity Cross terms

Aggregating Public Keys

hash key commitment key cross terms

CRS: | u,h g, ..., goN, g/, .., gt/en Vi # j: g©i/ci

Aggregated public key is a Pedersen vector commitment to the users’ public keys
Sample ¢y, ..., ¢y < Z, and publish g1, ..., g°V in CRS (as the commitment key)
Aggregated public key is a commitment to «y, ..., a,

7 = gZiE[N] aiCj

Now need a mechanism to sub-select only the keys for the users i € S € [N] in the signing quorum

Solution: publish g/¢i terms in the CRS

e(z, gZiegl/ci) = e(g, g)Zies % - e(g,g)zie[m Yjesaici/cj Still need to certify that S
satisfies the policy

set selector target quantity Cross terms [see paper for details]

Summary

Scheme Policy Family Assumption |crs| o] |Oagg]
Generic (SNARK) Boolean circuit generic bilinear group 0,(N) |G| 3|G]
Generic (BARG) Boolean circuit k-Lin (pairing) 0,(N) |G| poly(4) - |G|
[DCXNBR23] weighted threshold generic bilinear group 0,(N) |G| 8| G|
[GIMSW24] weighted threshold generic bilinear group 0,(N) |G| 9|G| + 5|F|

. monotone span program g-type assumption 0,(N?) 2| G| 3|G]
This work

threshold g-type assumption 0,(NlogN) 2|G| 3|G]

Take-away: algebraic framework yields schemes for general policies with shorter aggregate signatures
and security in the plain model

Cost: larger CRS (for dynamic threshold policies, difference is quasilinear vs. strictly linear)

Open Problems

Pairing-based schemes with transparent setup (and comparable signature/ciphertext size)

Silent threshold cryptography from post-quantum cryptographic assumptions

Thanks!
https://eprint.iacr.org/2025/1547 .pdf

	Slide 1: Silent Threshold Cryptography from Pairings
	Slide 2: Threshold Cryptography
	Slide 3: Who Generates the Shares?
	Slide 4: Who Generates the Shares?
	Slide 5: Silent Threshold Cryptography
	Slide 6: Example: Threshold Signatures with Silent Setup
	Slide 7: Example: Threshold Signatures with Silent Setup
	Slide 8: Silent Threshold Cryptography
	Slide 9: Silent Threshold Signatures
	Slide 10: Silent Threshold Signatures
	Slide 11: Silent Threshold Signatures
	Slide 12: Silent Threshold Signatures
	Slide 13: Silent Threshold Encryption
	Slide 14: Starting Point: Boneh-Boyen Signatures
	Slide 15: Starting Point: Boneh-Boyen Signatures
	Slide 16: Starting Point: Boneh-Boyen Signatures
	Slide 17: Construction Template
	Slide 19: Aggregating Signatures
	Slide 21: Aggregating Signatures
	Slide 22: Aggregating Public Keys
	Slide 23: Aggregating Public Keys
	Slide 24: Aggregating Public Keys
	Slide 37: Summary
	Slide 38: Open Problems

