
Silent Threshold Cryptography from Pairings

David Wu
UT Austin

January 26, 2026

NIST Workshop on Multi-Party Threshold Schemes

joint work with Brent Waters

Threshold Cryptography

sk1 sk2 sk4 sk5 sk6sk3

master secret key

Typical setup: split a cryptographic
key into many shares

Only an authorized set of parties can perform a target action (e.g., signing, decryption, etc.)

[Des87, Fra89, DF89]

shares

Who Generates the Shares?

sk1 sk2 sk4 sk5 sk6sk3

Typical setup: split a cryptographic
key into many shares

Only an authorized set of parties can perform a target action (e.g., signing, decryption, etc.)

master secret key

shares

Who Generates the Shares?

sk1 sk2 sk4 sk5 sk6sk3

master secret key

Option 1: Trusted dealer

sk2 sk3

sk4sk1

sk5 sk6

Option 2: Distributed key generation

Needs a trusted party

Redeal shares if policy changes (e.g., new user joins)

Requires parties to coordinate and interact

Rerun setup if policy changes (e.g., new user joins)

Silent Threshold Cryptography

sk1 sk2 sk4 sk5 sk6sk3

pk1 pk2 pk4 pk5 pk6pk3

[MRVWZ21, DCXNBR23, GJMSW24]

Users independently generate their own public key pk𝑖 and secret key sk𝑖

policy

pk2

pk4

pk5

arbitrary collection of
public keys

mpk

aggregated public key

Can deterministically aggregate any set of
public keys together with a policy

Master public key mpk serves as the key for
the threshold cryptosystem for the chosen

quorum

Individual secret key sk𝑖 is each user’s share

Example: Threshold Signatures with Silent Setup
[MRVWZ21, DCXNBR23, GJMSW24]

KeyGen crs → pk, sk

Users generate their own keys (relative to a common reference string)
sk

pk

Sign sk, 𝑚 → 𝜎

Signing key sk can be used to sign messages

policy

pk2

pk4

pk5

arbitrary collection of
public keys

mpk

aggregated public key

Aggregate crs, pk𝑖 𝑖∈𝑆, 𝑇 → (mpk, ht)

𝑇: target threshold

mpk: aggregated verification key for quorum

ht: aggregation hint

(𝜎 must verify relative to pk)

𝑚
𝜎

Example: Threshold Signatures with Silent Setup
[MRVWZ21, DCXNBR23, GJMSW24]

KeyGen crs → pk, sk

Users generate their own keys (relative to a common reference string)
sk

pk

Sign sk, 𝑚 → 𝜎

Signing key sk can be used to sign messages

Aggregate crs, pk𝑖 𝑖∈𝑆, 𝑇 → (mpk, ht)

(𝜎 must verify relative to pk)

pk2

pk4

pk5

AggSig ht, 𝜎𝑖 𝑖∈𝑆′ → 𝜎agg

𝑚
𝜎

𝑚
𝜎

𝑚
𝜎

𝑚
𝜎agg

𝜎agg is a signature on 𝑚 under mpk Verify mpk, 𝑚, 𝜎agg = 1

Efficiency: |𝜎agg| and signature verification time

are independent of number of users

Security: adversary with fewer than 𝑇 signatures
on 𝑚 cannot forge signature with respect to mpk

Silent Threshold Cryptography

sk1 sk2 sk4 sk5 sk6sk3

pk1 pk2 pk4 pk5 pk6pk3

[MRVWZ21, DCXNBR23, GJMSW24]

Users independently generate their own public key pk𝑖 and secret key sk𝑖

“Threshold cryptography where users choose their own shares”

Well-suited for decentralized settings: no need for trusted dealer, users do not need to be aware of each other

Supports dynamic policies (i.e., shares are not tied to a policy); users do not need to be aware of policy

Does rely on common reference string (CRS), which requires a one-time setup (rather than per-policy setup)

Silent Threshold Signatures

Scheme Assumption |𝜎| |𝜎agg|

Generic (SNARK)

Generic (BARG)

[GJMSW24]

[DCXNBR23]

generic bilinear group

𝑘-Lin (pairing)

generic bilinear group

generic bilinear group

𝔾

𝔾

𝔾

𝔾

3 𝔾

poly 𝜆 ⋅ 𝔾

9 𝔾 + 5 𝔽

8 𝔾

|crs|

𝑂𝜆 𝑁

𝑂𝜆 𝑁

𝑂𝜆 𝑁

𝑂𝜆 𝑁

Relatively few constructions (other than via generic tools like SNARKs or BARGs)

Policy Family

Boolean circuit

Boolean circuit

weighted threshold

weighted threshold

Silent Threshold Signatures

Relatively few constructions (other than via generic tools like SNARKs or BARGs)

Existing constructions either have long signatures (super-constant number of group elements) or only shown
secure in the generic bilinear group model

In fact: all constructions with short signatures rely on some kind of SNARK machinery
(e.g., sum check, inner product arguments, etc.)

This work: a direct algebraic construction (no SNARK machinery)

Scheme Assumption |𝜎| |𝜎agg|

Generic (SNARK)

Generic (BARG)

[GJMSW24]

[DCXNBR23]

generic bilinear group

𝑘-Lin (pairing)

generic bilinear group

generic bilinear group

𝔾

𝔾

𝔾

𝔾

3 𝔾

poly 𝜆 ⋅ 𝔾

9 𝔾 + 5 𝔽

8 𝔾

|crs|

𝑂𝜆 𝑁

𝑂𝜆 𝑁

𝑂𝜆 𝑁

𝑂𝜆 𝑁

Policy Family

Boolean circuit

Boolean circuit

weighted threshold

weighted threshold

This work
𝑞-type assumption 2 𝔾 3 𝔾𝑂𝜆 𝑁2

𝑂𝜆 𝑁 log 𝑁 2 𝔾 3 𝔾𝑞-type assumption

monotone span program

threshold

Silent Threshold Signatures

This work
𝑞-type assumption 2 𝔾 3 𝔾

Scheme Assumption |𝜎| |𝜎agg|

Generic (SNARK)

Generic (BARG)

[GJMSW24]

[DCXNBR23]

generic bilinear group

𝑘-Lin (pairing)

generic bilinear group

generic bilinear group

𝔾

𝔾

𝔾

𝔾

3 𝔾

poly 𝜆 ⋅ 𝔾

9 𝔾 + 5 𝔽

8 𝔾

|crs|

𝑂𝜆 𝑁

𝑂𝜆 𝑁

𝑂𝜆 𝑁

𝑂𝜆 𝑁

𝑂𝜆 𝑁2

𝑂𝜆 𝑁 log 𝑁 2 𝔾 3 𝔾𝑞-type assumption

Base signatures have two group elements, but
final signature is as short as that using a

pairing-based SNARK (e.g., [Gro16])

monotone span program

Policy Family

Boolean circuit

Boolean circuit

weighted threshold

weighted threshold

threshold

Silent Threshold Signatures

This work
monotone span program 𝑞-type assumption 2 𝔾 3 𝔾

Scheme Policy Family Assumption |𝜎| |𝜎agg|

Generic (SNARK)

Generic (BARG)

[GJMSW24]

[DCXNBR23]

Boolean circuit

Boolean circuit

weighted threshold

weighted threshold

generic bilinear group

𝑘-Lin (pairing)

generic bilinear group

generic bilinear group

𝔾

𝔾

𝔾

𝔾

3 𝔾

poly 𝜆 ⋅ 𝔾

9 𝔾 + 5 𝔽

8 𝔾

|crs|

𝑂𝜆 𝑁

𝑂𝜆 𝑁

𝑂𝜆 𝑁

𝑂𝜆 𝑁

𝑂𝜆 𝑁2

threshold 𝑂𝜆 𝑁 log 𝑁 2 𝔾 3 𝔾𝑞-type assumption

Can support general policies beyond
threshold policies (e.g., majority of

majorities, monotone Boolean formulas)

Security in the
plain model

Drawback: larger CRS (quadratic
for general policies, quasi-linear

for threshold policies)

Silent Threshold Encryption

Techniques directly generalize to setting of silent threshold public-key encryption

Scheme Assumption |ct||crs|Policy Family

𝑞-type assumption 𝑂𝜆 𝑁 log 𝑁

[GKPW24] threshold generic bilinear group 𝑂𝜆 𝑁 9 𝔾

[RSY21, ADMSW24] threshold 𝑖𝒪 + OWF/SSB None 𝑂𝜆 1

[DJWW25] 𝑆-space read-once TM 𝑖𝒪 + SSB 𝑂𝜆 1 𝑂𝜆 2𝑆

This work monotone span program 𝑞-type assumption 𝑂𝜆 𝑁2 3 𝔾 + 𝔽

3 𝔾 + 𝔽threshold

No generic SNARK-based solution in the case of encryption (except with extractable witness encryption)

For general policies, problem is challenging even with strong tools like witness encryption or obfuscation

This work: first construction for Boolean formulas and thresholds, but does need a large CRS

Starting Point: Boneh-Boyen Signatures

This talk: will focus just on signatures (same techniques work for encryption)

Builds on the Boneh-Boyen [BB04] pairing-based signature scheme (derived from an
identity-based encryption scheme)

vk: 𝑒 𝑔, 𝑔 𝛼 , 𝑢, ℎ

sk: 𝑔𝛼 (𝛼 ← ℤ𝑝)

𝑢, ℎ ← 𝔾

Conventions (this talk):
• Symmetric prime-order pairing group 𝔾, 𝔾T

• Group order 𝑝
• Generator 𝑔
• Pairing 𝑒: 𝔾 × 𝔾 → 𝔾T

Starting Point: Boneh-Boyen Signatures

This talk: will focus just on signatures (same techniques work for encryption)

Builds on the Boneh-Boyen [BB04] pairing-based signature scheme (derived from an
identity-based encryption scheme)

vk: 𝑒 𝑔, 𝑔 𝛼 , 𝑢, ℎ

sk: 𝑔𝛼 (𝛼 ← ℤ𝑝)

𝑢, ℎ ← 𝔾

Sign message 𝑚 ∈ ℤ𝑝: 1. Sample 𝑟 ← ℤ𝑝

 2. Compute “hash” of the message 𝑢𝑚ℎ
 3. Output 𝑔𝛼 𝑢𝑚ℎ 𝑟 , 𝑔𝑟

“encryption of the signing key 𝑔𝛼 where the hash of the message 𝑢𝑚ℎ is the public key”

Starting Point: Boneh-Boyen Signatures

This talk: will focus just on signatures (same techniques work for encryption)

Builds on the Boneh-Boyen [BB04] pairing-based signature scheme (derived from an
identity-based encryption scheme)

vk: 𝑒 𝑔, 𝑔 𝛼 , 𝑢, ℎ

sk: 𝑔𝛼 (𝛼 ← ℤ𝑝)

𝑢, ℎ ← 𝔾

Signature on 𝑚 ∈ ℤ𝑝: 𝑔𝛼 𝑢𝑚ℎ 𝑟 , 𝑔𝑟

Verification: check that 𝑒 𝑔, 𝑔 𝛼 =
𝑒 𝑔, 𝑔𝛼 𝑢𝑚ℎ 𝑟

𝑒 𝑔𝑟,𝑢𝑚ℎ

“decrypt in the target group via the pairing”

Construction Template

sk sk = 𝛼

pk = 𝑒 𝑔, 𝑔 𝛼pk

𝑚
𝜎

Each user chooses their own Boneh-
Boyen public key

Signature is plain Boneh-Boyen signature𝜎 = 𝑔𝛼 𝑢𝑚ℎ 𝑟 , 𝑔𝑟

pk1 = 𝑒 𝑔, 𝑔 𝛼1

pk2 = 𝑒 𝑔, 𝑔 𝛼2

pk𝑛 = 𝑒 𝑔, 𝑔 𝛼𝑛

⋮

Need to design two mechanisms:
1. Aggregate the user public keys relative to a policy
2. Aggregate signatures for users in the set

CRS: 𝑢, ℎ

hash key

Aggregating Signatures

We will rely on linear homomorphism: ෥𝜎𝑖 = 𝑔𝛼𝑖 𝑢𝑚ℎ 𝑟𝑖 , 𝑔𝑟𝑖

෤𝜎𝑖,1 ෤𝜎𝑖,2

𝜎agg,1 = ෑ

𝑖∈𝑆

෤𝜎𝑖,1
𝜔𝑖 = 𝑔σ𝑖∈𝑆 𝛼𝑖 𝑢𝑚ℎ σ𝑖∈𝑆 𝑟𝑖 = 𝑔σ𝑖∈𝑆 𝛼𝑖 𝑢𝑚ℎ ǁ𝑟

𝜎agg,2 = ෑ

𝑖∈𝑆

෤𝜎𝑖,2
𝜔𝑖 = 𝑔σ𝑖∈𝑆 𝑟𝑖 = 𝑔 ǁ𝑟

ǁ𝑟 = ෍

𝑖∈𝑆

𝑟𝑖

𝜎agg = 𝜎agg,1, 𝜎agg,2 is a Boneh-Boyen

signature on 𝑚 with respect to 𝑒 𝑔, 𝑔 σ𝑖∈𝑆 𝛼𝑖

Suppose one has signature from each party 𝑖 ∈ 𝑆

CRS: 𝑢, ℎ

hash key

Aggregating Signatures

We will rely on linear homomorphism: ෥𝜎𝑖 = 𝑔𝛼𝑖 𝑢𝑚ℎ 𝑟𝑖 , 𝑔𝑟𝑖

෤𝜎𝑖,1 ෤𝜎𝑖,2

Suppose one has signature from each party 𝑖 ∈ 𝑆

Aggregate signature (𝜎agg,1, 𝜎agg,2) verifies with respect to ς𝑖∈𝑆 𝑒 𝑔, 𝑔 𝛼𝑖

Inefficient approach: Aggregate signature includes description of 𝑆 so verifier can check that 𝑆 satisfies
the policy, and if so, compute the aggregated verification key ς𝑖∈𝑆 𝑒 𝑔, 𝑔 𝛼𝑖 and check the signature

Our approach: Derive aggregated key 𝑒 𝑔, 𝑔 σ𝑖∈𝑆 𝛼𝑖 from the pairing implicitly

CRS: 𝑢, ℎ

hash key

Verifier does not know
the set 𝑆!

Aggregating Public Keys

Aggregated public key is a Pedersen vector commitment to the users’ public keys

Sample 𝑐1, … , 𝑐𝑁 ← ℤ𝑝 and publish 𝑔𝑐1 , … , 𝑔𝑐𝑁 in CRS (as the commitment key)

CRS: 𝑢, ℎ

hash key

𝑔𝑐1 , … , 𝑔𝑐𝑁

commitment key

Aggregated public key is a commitment to 𝛼1, … , 𝛼𝑛

𝑧 = 𝑔σ𝑖∈ 𝑁 𝛼𝑖𝑐𝑖

Now need a mechanism to sub-select only the keys for the users 𝑖 ∈ 𝑆 ⊆ 𝑁 in the signing quorum

Solution: publish 𝑔1/𝑐𝑖 terms in the CRS

𝑒 𝑧, 𝑔σ𝑖∈𝑆 Τ1 𝑐𝑖 = 𝑒 𝑔, 𝑔 σ𝑖∈𝑆 𝛼𝑖 ⋅ 𝑒 𝑔, 𝑔 σ𝑖∈ 𝑁 σ𝑗∈𝑆 Τ𝛼𝑖𝑐𝑖 𝑐𝑗

Aggregating Public Keys

Aggregated public key is a Pedersen vector commitment to the users’ public keys

Sample 𝑐1, … , 𝑐𝑁 ← ℤ𝑝 and publish 𝑔𝑐1 , … , 𝑔𝑐𝑁 in CRS (as the commitment key)

CRS: 𝑢, ℎ

hash key

Aggregated public key is a commitment to 𝛼1, … , 𝛼𝑛

𝑧 = 𝑔σ𝑖∈ 𝑁 𝛼𝑖𝑐𝑖

Now need a mechanism to sub-select only the keys for the users 𝑖 ∈ 𝑆 ⊆ 𝑁 in the signing quorum

Solution: publish 𝑔1/𝑐𝑖 terms in the CRS

target quantity cross termsset selector

𝑔𝑐1 , … , 𝑔𝑐𝑁 , 𝑔 Τ1 𝑐1 , … , 𝑔 Τ1 𝑐𝑁

commitment key

Aggregating Public Keys

Aggregated public key is a Pedersen vector commitment to the users’ public keys

Sample 𝑐1, … , 𝑐𝑁 ← ℤ𝑝 and publish 𝑔𝑐1 , … , 𝑔𝑐𝑁 in CRS (as the commitment key)

CRS: 𝑢, ℎ

hash key

Aggregated public key is a commitment to 𝛼1, … , 𝛼𝑛

𝑧 = 𝑔σ𝑖∈ 𝑁 𝛼𝑖𝑐𝑖

Now need a mechanism to sub-select only the keys for the users 𝑖 ∈ 𝑆 ⊆ 𝑁 in the signing quorum

Solution: publish 𝑔1/𝑐𝑖 terms in the CRS

𝑔𝑐1 , … , 𝑔𝑐𝑁 , 𝑔 Τ1 𝑐1 , … , 𝑔 Τ1 𝑐𝑁

commitment key cross terms

∀𝑖 ≠ 𝑗: 𝑔 Τ𝑐𝑖 𝑐𝑗

Still need to certify that 𝑆
satisfies the policy

[see paper for details]

𝑒 𝑧, 𝑔σ𝑖∈𝑆 Τ1 𝑐𝑖 = 𝑒 𝑔, 𝑔 σ𝑖∈𝑆 𝛼𝑖 ⋅ 𝑒 𝑔, 𝑔 σ𝑖∈ 𝑁 σ𝑗∈𝑆 Τ𝛼𝑖𝑐𝑖 𝑐𝑗

target quantity cross termsset selector

Summary

This work
𝑞-type assumption 2 𝔾 3 𝔾

Scheme Assumption |𝜎| |𝜎agg|

Generic (SNARK)

Generic (BARG)

[GJMSW24]

[DCXNBR23]

generic bilinear group

𝑘-Lin (pairing)

generic bilinear group

generic bilinear group

𝔾

𝔾

𝔾

𝔾

3 𝔾

poly 𝜆 ⋅ 𝔾

9 𝔾 + 5 𝔽

8 𝔾

|crs|

𝑂𝜆 𝑁

𝑂𝜆 𝑁

𝑂𝜆 𝑁

𝑂𝜆 𝑁

𝑂𝜆 𝑁2

𝑂𝜆 𝑁 log 𝑁 2 𝔾 3 𝔾𝑞-type assumption

monotone span program

Policy Family

Boolean circuit

Boolean circuit

weighted threshold

weighted threshold

threshold

Take-away: algebraic framework yields schemes for general policies with shorter aggregate signatures
and security in the plain model

Cost: larger CRS (for dynamic threshold policies, difference is quasilinear vs. strictly linear)

Open Problems

Pairing-based schemes with transparent setup (and comparable signature/ciphertext size)

Silent threshold cryptography from post-quantum cryptographic assumptions

Thanks!
https://eprint.iacr.org/2025/1547.pdf

	Slide 1: Silent Threshold Cryptography from Pairings
	Slide 2: Threshold Cryptography
	Slide 3: Who Generates the Shares?
	Slide 4: Who Generates the Shares?
	Slide 5: Silent Threshold Cryptography
	Slide 6: Example: Threshold Signatures with Silent Setup
	Slide 7: Example: Threshold Signatures with Silent Setup
	Slide 8: Silent Threshold Cryptography
	Slide 9: Silent Threshold Signatures
	Slide 10: Silent Threshold Signatures
	Slide 11: Silent Threshold Signatures
	Slide 12: Silent Threshold Signatures
	Slide 13: Silent Threshold Encryption
	Slide 14: Starting Point: Boneh-Boyen Signatures
	Slide 15: Starting Point: Boneh-Boyen Signatures
	Slide 16: Starting Point: Boneh-Boyen Signatures
	Slide 17: Construction Template
	Slide 19: Aggregating Signatures
	Slide 21: Aggregating Signatures
	Slide 22: Aggregating Public Keys
	Slide 23: Aggregating Public Keys
	Slide 24: Aggregating Public Keys
	Slide 37: Summary
	Slide 38: Open Problems

