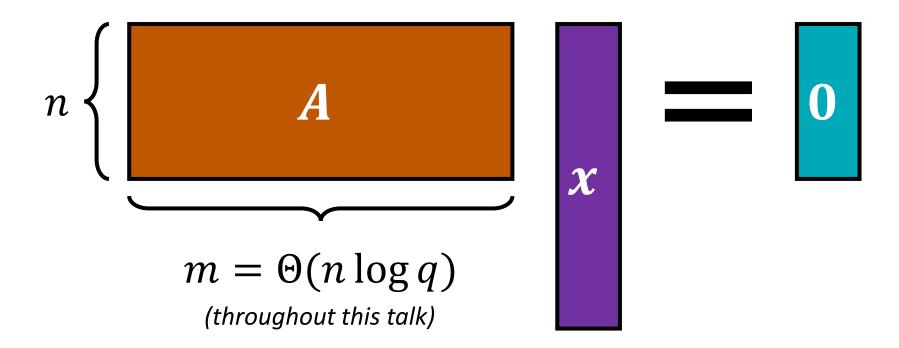
Lattice Assumptions with Hints: Succinct LWE and its Applications

David Wu June 2025

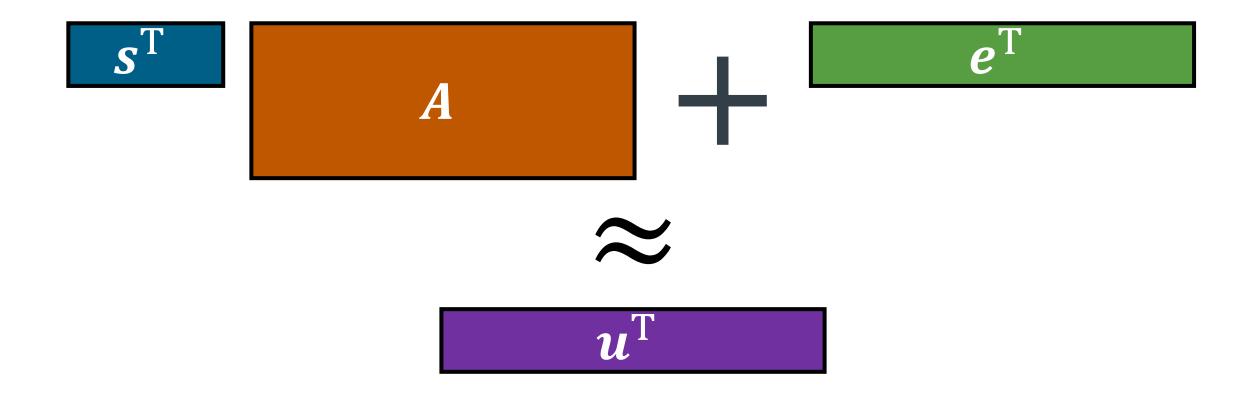
Special thanks to Hoeteck Wee for many insightful discussions and collaborations

Short integer solutions (SIS): Given $A \leftarrow \mathbb{Z}_q^{n \times m}$, find low-norm $x \neq 0$ such that Ax = 0 [Ajt96]

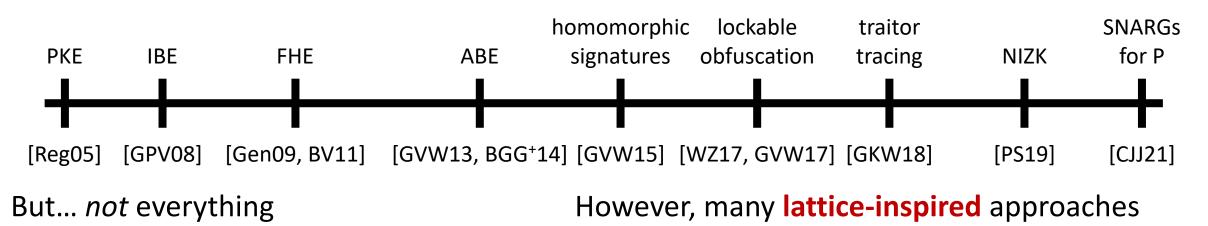


Yields one-way functions, collision-resistant hash functions, digital signatures

Short integer solutions (SIS): Given $A \leftarrow \mathbb{Z}_q^{n \times m}$, find low-norm $x \neq 0$ such that Ax = 0 [Ajt96] Learning with errors (LWE): Distinguish $(A, s^T A + e^T)$ from (A, u^T) [Reg05]



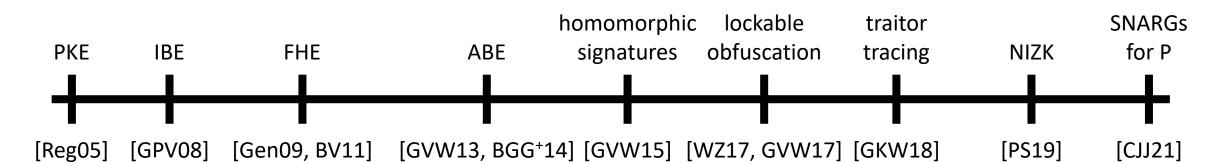
Short integer solutions (SIS): Given $A \leftarrow \mathbb{Z}_q^{n \times m}$, find low-norm $x \neq 0$ such that Ax = 0 [Ajt96] Learning with errors (LWE): Distinguish $(A, s^T A + e^T)$ from (A, u^T) [Reg05]



- Broadcast encryption [BV22]
- Witness encryption [GGH15, CVW18]
- Indistinguishability obfuscation

[GGH15, Agr19, CHVW19, AP20, BDGM20a, WW21, GP21, BDGM20b, DQVWW21]

Short integer solutions (SIS): Given $A \leftarrow \mathbb{Z}_q^{n \times m}$, find low-norm $x \neq 0$ such that Ax = 0 [Ajt96] Learning with errors (LWE): Distinguish $(A, s^T A + e^T)$ from (A, u^T) [Reg05]



But... *not* everything

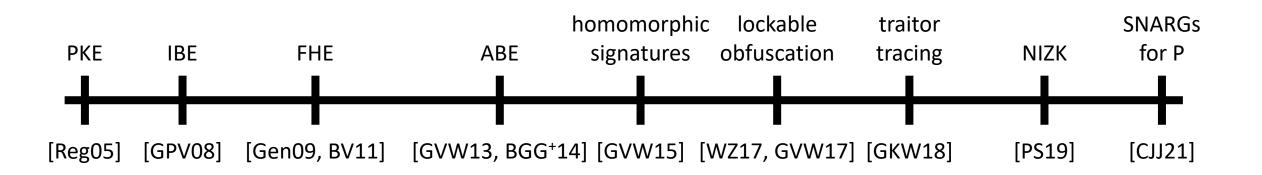
Broadcast encryption[BV22]Witness encryption[GGH15, CVW18]Indistinguishability obfuscation

However, many **lattice-inspired** approaches

Most schemes did not have a concrete hardness assumption or were based on a hardness assumption that was subsequently broken (in the most general setting)

[GGH15, Agr19, CHVW19, AP20, BDGM20a, WW21, GP21, BDGM20b, DQVWW21]

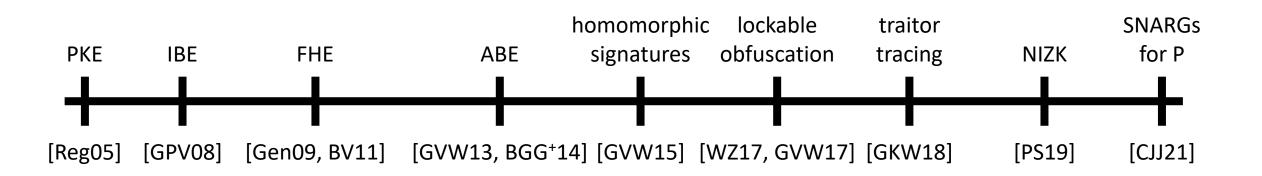
Short integer solutions (SIS): Given $A \leftarrow \mathbb{Z}_q^{n \times m}$, find low-norm $x \neq 0$ such that Ax = 0 [Ajt96] Learning with errors (LWE): Distinguish $(A, s^T A + e^T)$ from (A, u^T) [Reg05]



Recent developments:

- Broadcast encryption from public-coin evasive LWE [Wee22]
- Witness encryption based on private-coin evasive LWE [Tsa22, VWW22]
- New indistinguishability obfuscation candidates: [BDJMMPV25, HJL25, AMYY25, CLW25, SBP25]

Short integer solutions (SIS): Given $A \leftarrow \mathbb{Z}_q^{n \times m}$, find low-norm $x \neq 0$ such that Ax = 0 [Ajt96] Learning with errors (LWE): Distinguish $(A, s^T A + e^T)$ from (A, u^T) [Reg05]



Recent developments:

- Broadcast encryption from public-coin evasive LWE [Wee22]
- Witness encryption based on private-coin evasive LWE [Tsa22, VWW22]
- New indistinguishability obfuscation candidates: [BDJMMPV25, HJL25, AMYY25, CLW25, SBP25] *later this afternoon!*

This talk: explore lattice assumptions with **minimum additional structure** that allow us to reason about security of **simple** (and natural) constructions of new cryptographic primitives

Hope: over time, will be able to reduce to the standard lattice problems

Very successful in the area of bilinear maps: many new assumptions (e.g., composite-order, q-type, etc.), but can now do most things from k-Lin

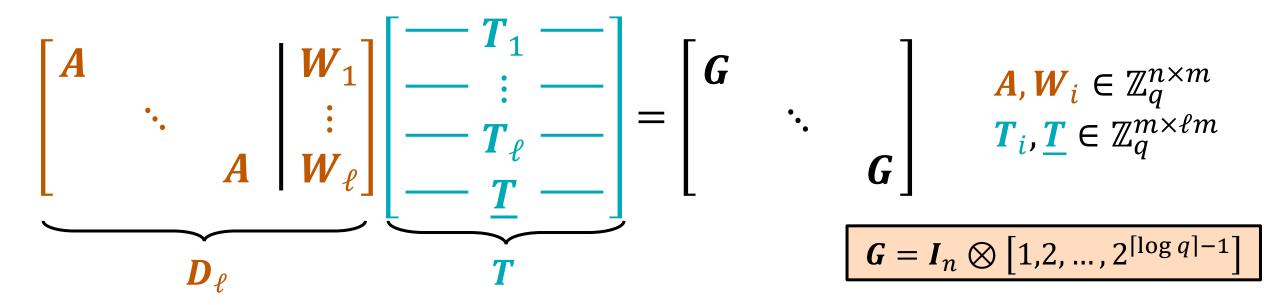
Recent developments:

- Broadcast encryption from public-coin evasive LWE [Wee22]
- Witness encryption based on private-coin evasive LWE [Tsa22, VWW22]
- New indistinguishability obfuscation candidates: [BDJMMPV25, HJL25, AMYY25, CLW25, SBP25] *later this afternoon!*

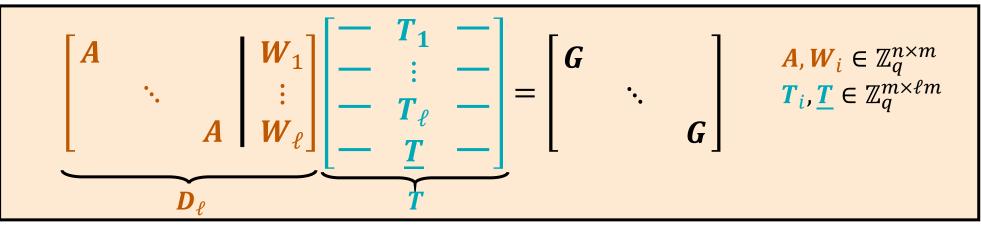
General template: SIS/LWE assumptions hold with respect to *A* even given some "hint"

Hint is a matrix D_{ℓ} related to A and a (gadget) trapdoor T for D_{ℓ}

Alternatively: low-norm vectors in **correlated** cosets of $\mathcal{L}^{\perp}(A)$



Typically: T is random gadget trapdoor (a discrete Gaussian conditioned on $D_{\ell}T = I_{\ell} \otimes G$)



SIS/LWE holds with respect to A given D_{ℓ} , T

Concrete instances:

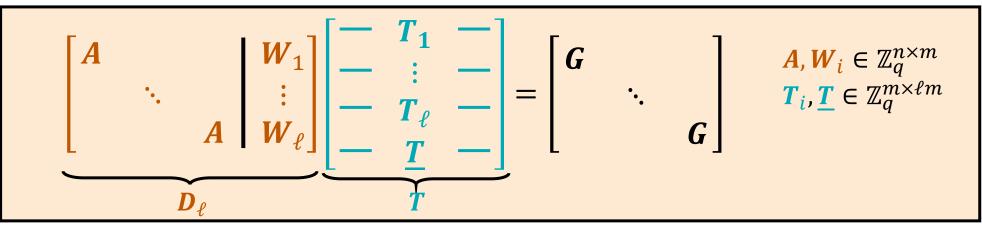
Basis-augmented SIS (BASIS) [WW23]

$$A \leftarrow \mathbb{Z}_q^{n \times m}$$
, $W_i = W'_i G$ where $W'_i \leftarrow \mathbb{Z}_q^{n \times r}$

ℓ-succinct LWE [Wee24]

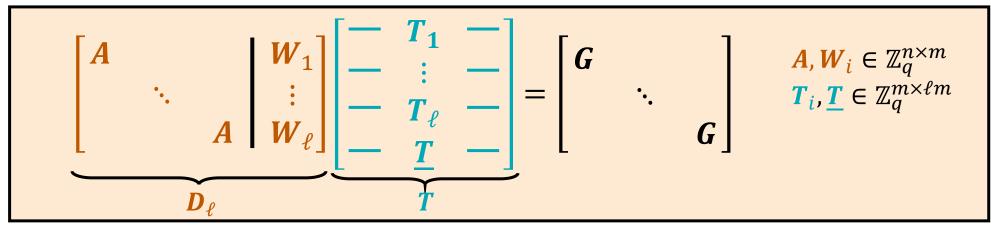
$$A \leftarrow \mathbb{Z}_q^{n \times m}$$
, $W_i \leftarrow \mathbb{Z}_q^{n \times m}$

BASIS $\Rightarrow \ell$ -succinct SIS (similarly for LWE variant)



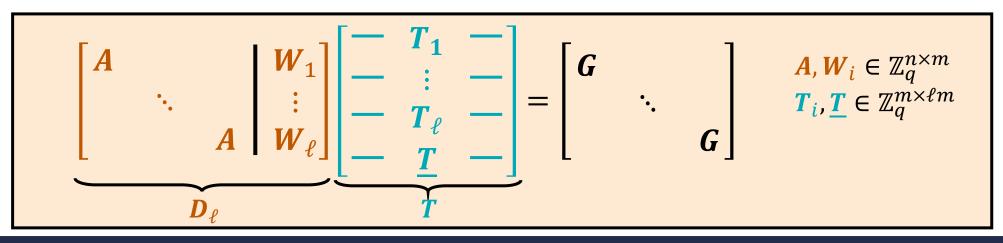
SIS/LWE holds with respect to A given D_{ℓ} , T

Can also consider structured A



SIS/LWE holds with respect to A given D_{ℓ} , T

Can also consider **structured** A: sample $W_1, ..., W_\ell \leftarrow \mathbb{Z}_q^{n \times m}$ and $R_1, ..., R_\ell \leftarrow D_{\mathbb{Z},\sigma}^{m \times m}$ Define $A = \begin{bmatrix} \cdots & W_i R_j + \delta_{ij} G & \cdots \end{bmatrix} \in \mathbb{Z}_q^{n \times \ell^2 m}$ where $\delta_{ij} = 1$ if i = j and $\delta_{ij} = 0$ otherwise The matrix D_ℓ has a **public** trapdoor $T = \begin{bmatrix} \operatorname{vec}(I_\ell) \otimes I_{\ell m} \\ -R \end{bmatrix}$ where $R = [R_1 | \cdots | R_\ell]$ LWE assumption with respect to A given D_ℓ , T asks that $s^{\mathrm{T}}(W_i R_j + \delta_{ij} G) + e_{ij}^T$ is pseudorandom for all $i, j \in [\ell]$ given W_i, R_i



The decomposed LWE assumption does not refer to any trapdoors!

Assumption similar in spirit to a "circular security" assumption (note: without the $\delta_{ij}G$ term, assumption is implied by plain LWE)

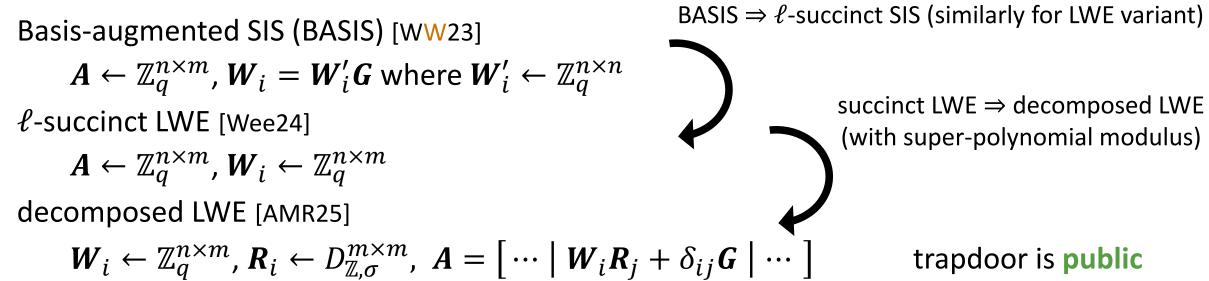
Open problem: show hardness of decomposed LWE from plain LWE (or some *worst-case* lattice problem)

 $s^{T}(W_{i}R_{j} + \delta_{ij}G) + e_{ij}^{T}$ is pseudorandom for all $i, j \in [\ell]$ given W_{i}, R_{i}

$$\begin{bmatrix} A & & W_1 \\ & \ddots & & \vdots \\ & A & W_\ell \end{bmatrix} \begin{bmatrix} - & T_1 & - \\ - & \vdots & - \\ - & T_\ell & - \\ - & T & - \end{bmatrix} = \begin{bmatrix} G & & & \\ & \ddots & & \\ & & G \end{bmatrix} \qquad \begin{array}{c} A, W_i \in \mathbb{Z}_q^{n \times m} \\ T_i, \underline{T} \in \mathbb{Z}_q^{m \times \ell m} \\ T_i, \underline{T} \in \mathbb{Z}_q^{m \times \ell m} \end{array}$$

SIS/LWE holds with respect to A given D_{ℓ} , T

Concrete instances:



$$\begin{bmatrix} A & & W_1 \\ & \ddots & & \vdots \\ & A & W_\ell \end{bmatrix} \begin{bmatrix} - & T_1 & - \\ - & \vdots & - \\ - & T_\ell & - \\ - & T & - \end{bmatrix} = \begin{bmatrix} G & & & \\ & \ddots & & \\ & & G \end{bmatrix} \qquad \begin{array}{c} A, W_i \in \mathbb{Z}_q^{n \times m} \\ T_i, \underline{T} \in \mathbb{Z}_q^{m \times \ell m} \\ T_i, \underline{T} \in \mathbb{Z}_q^{m \times \ell m} \end{array}$$

SIS/LWE holds with respect to A given D_{ℓ} , T

Concrete instances:

Basis-augmented SIS (BASIS) [WW23]

$$\pmb{A} \leftarrow \mathbb{Z}_q^{n imes m}$$
, $\pmb{W}_i = \pmb{W}_i' \pmb{G}$ where $\pmb{W}_i' \leftarrow \mathbb{Z}_q^{n imes n}$

ℓ-succinct LWE [Wee<mark>24</mark>]

$$\boldsymbol{A} \leftarrow \mathbb{Z}_q^{n \times m}$$
, $\boldsymbol{W}_i \leftarrow \mathbb{Z}_q^{n \times m}$

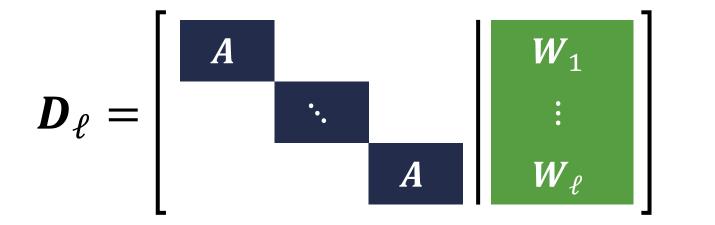
decomposed LWE [AMR25]

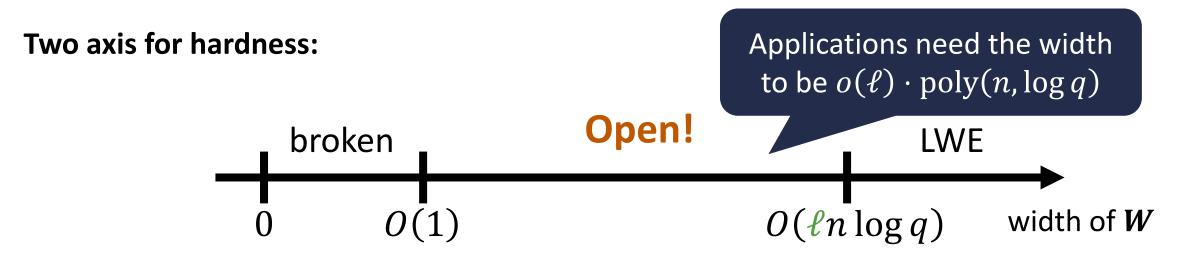
$$\boldsymbol{W}_{i} \leftarrow \mathbb{Z}_{q}^{n \times m}, \boldsymbol{R}_{i} \leftarrow D_{\mathbb{Z},\sigma}^{m \times m}, \boldsymbol{A} = \left[\cdots \mid \boldsymbol{W}_{i}\boldsymbol{R}_{j} + \delta_{ij}\boldsymbol{G} \mid \cdots \right]$$

2026: LWE?

ℓ -Succinct LWE

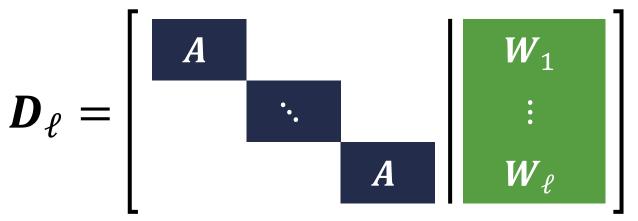
LWE is hard with respect to A given a trapdoor T for a related matrix D_{ℓ}



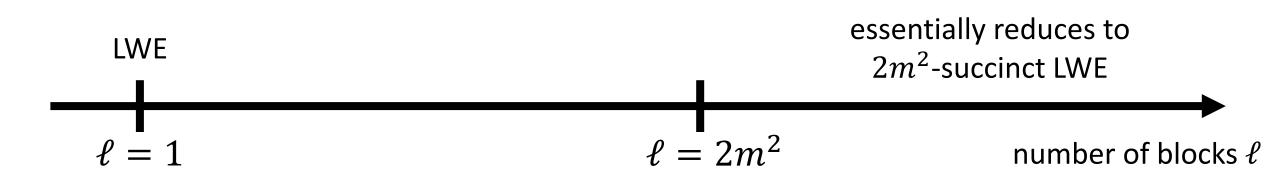


ℓ -Succinct LWE

LWE is hard with respect to A given a trapdoor T for a related matrix D_{ℓ}



Two axis for hardness:



Applications of Succinct and Decomposed LWE

Functional commitments for all circuits (and SNARGs for P/poly)	[WW23, WW <mark>2</mark> 3b, Wee24, Wee25]
Optimal broadcast encryption	[Wee25]
Distributed broadcast encryption	[CW24, CHW25, WW25]
Nearly-optimal key-policy (and ciphertext-policy) ABE for circuits	[Wee24, Wee25]
Registered ABE for circuits	[CHW25, WW25]
Fully succinct randomized encodings	[AMR25]
Laconic function evaluation (and ABE) for RAM programs	[AMR25]

Applications of Succinct and Decomposed LWE

Functional commitments for all circuits (and SNARGs for P/poly) [ww23, ww23b, wee24, wee25]

Optimal broadcast encryption

Distributed broadcast encryption

[Wee25b]: Functional commitments from circuits and SNARGs for P/poly from standard SIS!

Nearly-optimal key-policy (and ciphertext-policy) ABE for circuits [Wee24, Wee25]

Registered ABE for circuits

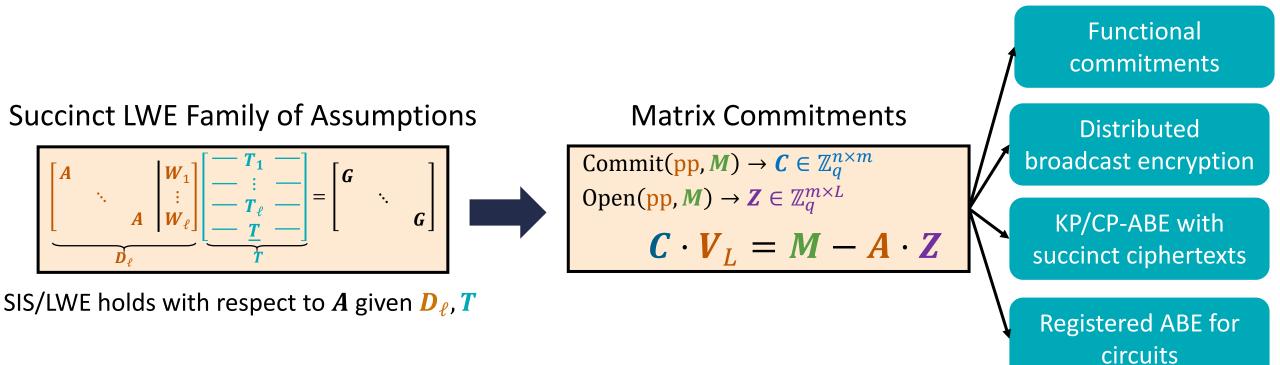
Fully succinct randomized encodings

[CHW25, WW25]

[AMR25]

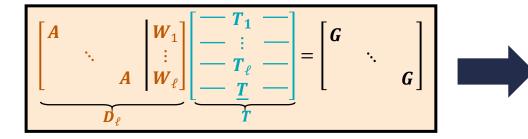
Laconic function evaluation (and ABE) for RAM programs [AMR25]

Roadmap

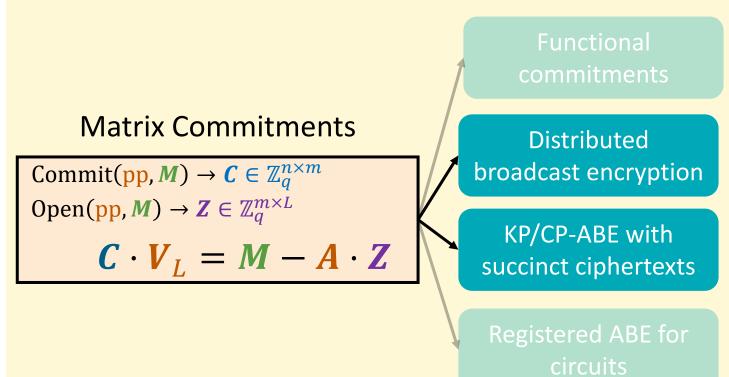


Roadmap

Succinct LWE Family of Assumptions



SIS/LWE holds with respect to A given D_{ℓ} , T



A Useful Abstraction: Matrix Commitments

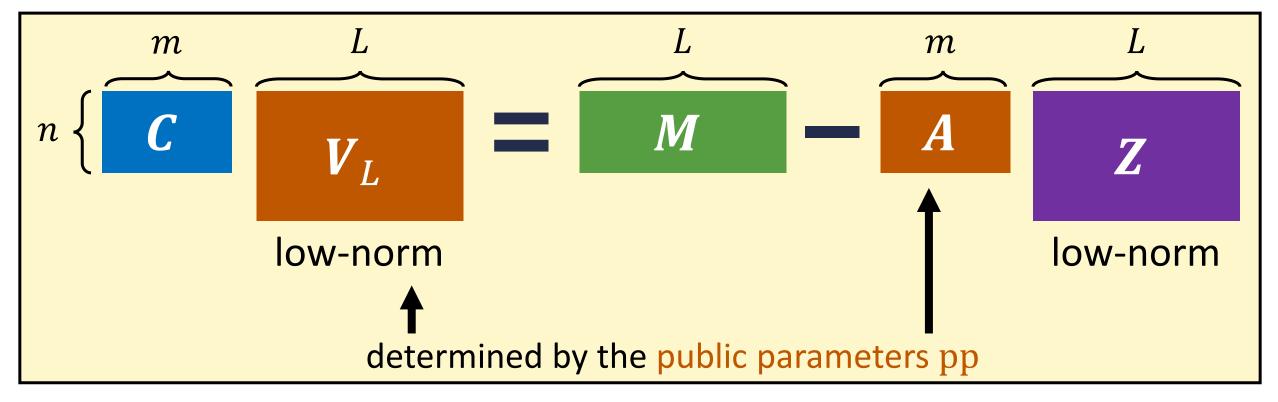
[Wee25]

Succinct commitment to a matrix $M \in \mathbb{Z}_q^{n \times L}$

 $\operatorname{Commit}(\operatorname{pp}, M) \to C \in \mathbb{Z}_q^{n \times m}$

$$\operatorname{Open}(\operatorname{pp}, M) \to Z \in \mathbb{Z}_q^{m \times L}$$

deterministic algorithms



A Useful Abstraction: Matrix Commitments

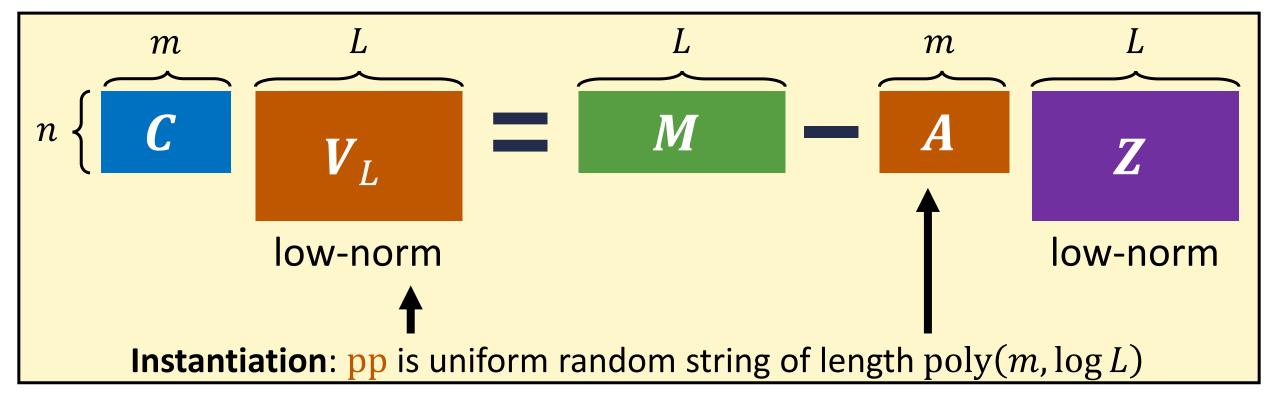
[Wee25]

Succinct commitment to a matrix $M \in \mathbb{Z}_q^{n \times L}$

 $\operatorname{Commit}(\operatorname{pp}, M) \to C \in \mathbb{Z}_q^{n \times m}$

$$\operatorname{Open}(\operatorname{pp}, M) \to Z \in \mathbb{Z}_q^{m \times L}$$

deterministic algorithms



A Useful Abstraction: Matrix Commitments

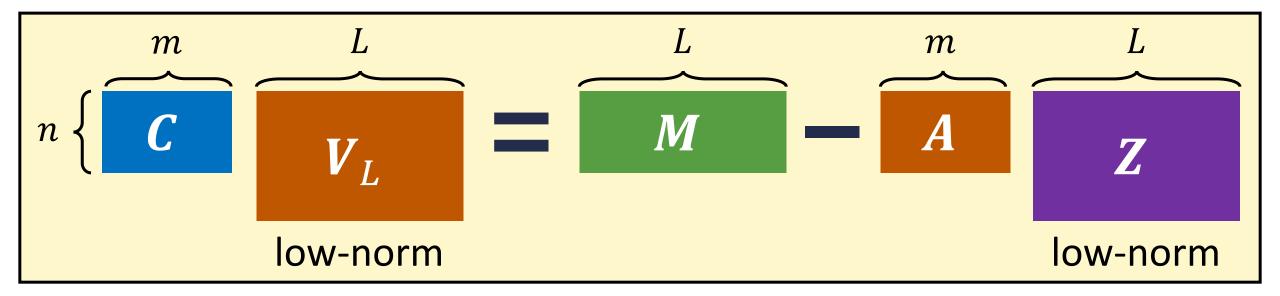
[Wee25]

Succinct commitment to a matrix $M \in \mathbb{Z}_q^{n \times L}$

 $\operatorname{Commit}(\operatorname{pp}, M) \to C \in \mathbb{Z}_q^{n \times m}$

$$\operatorname{Open}(\operatorname{pp}, M) \to Z \in \mathbb{Z}_q^{m \times L}$$

deterministic algorithms

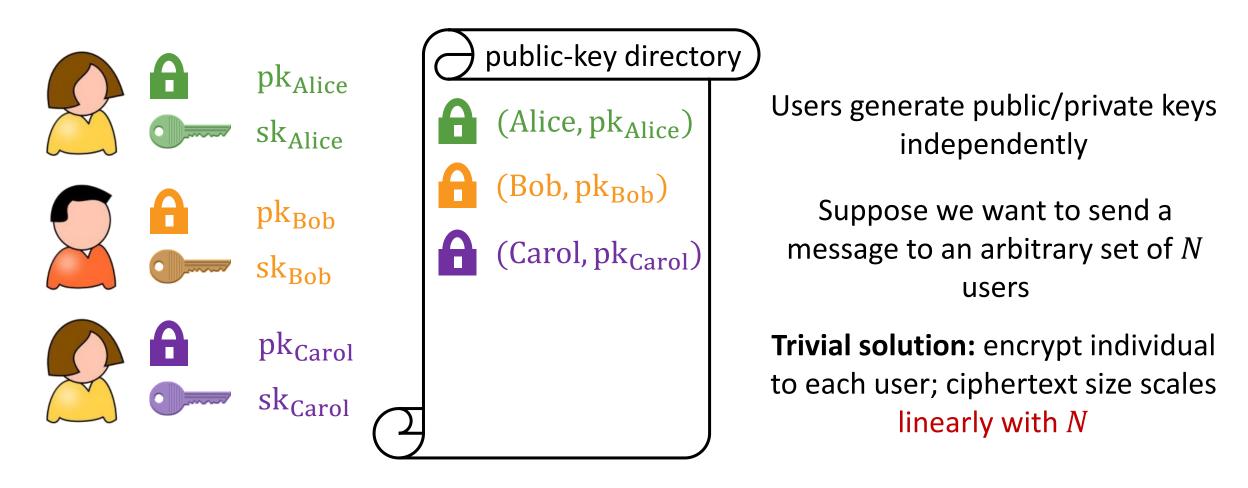


Security property: $(pp, s^T A + e^T) \approx (pp, u^T)$

LWE holds with respect to A given pp

Distributed Broadcast Encryption

[WQZD14, BZ14]



Distributed broadcast encryption: encrypt to an **arbitrary** set of public keys with a **short** ciphertext

Distributed Broadcast Encryption

[WQZD14, BZ14]

public-key directory (Alice, pk_{Alice}) (Bob, pk_{Bob}) (Carol, pk_{Carol})

Setup $(1^{\lambda}) \rightarrow pp$ Generates a set of public parameters KeyGen(pp, id) \rightarrow (pk_{id}, sk_{id}) Samples a key-pair for a user Encrypt(pp, $\{pk_{id}\}_{id\in S}, m$) \rightarrow ct Can encrypt a message *m* to any set of user public keys **Efficiency:** $|ct| = |m| + poly(\lambda, log|S|)$ Decrypt(pp, $\{pk_{id}\}_{id\in S}, sk_{id}, ct\} \rightarrow m$ **Correctness:** Any secret key sk_{id} associated with $id \in S$ can decrypt

Security: ct computationally hides m if adversary does not have a key for an identity id $\in S$

Distributed Broadcast Encryption

- Trustless version of broadcast encryption [FN93] without a central authority (or master secret key)
- Implies broadcast encryption with a long master public key
- Can also consider

 "registered" variant where
 encryption and decryption
 only needs to know
 identities and not public keys

 $\operatorname{Setup}(1^{\lambda}) \to \operatorname{pp}$

Generates a set of public parameters

 $KeyGen(pp, id) \rightarrow (pk_{id}, sk_{id})$

Samples a key-pair for a user

 $\mathsf{Encrypt}(\mathsf{pp},\{\mathsf{pk}_{\mathsf{id}}\}_{\mathsf{id}\in S},m)\to\mathsf{ct}$

Can encrypt a message m to any set of user public keys **Efficiency:** $|ct| = |m| + poly(\lambda, log|S|)$

 $\text{Decrypt}(\text{pp}, \{\text{pk}_{\text{id}}\}_{\text{id}\in S}, \text{sk}_{\text{id}}, \text{ct}) \rightarrow m$

Correctness: Any secret key sk_{id} associated with $id \in S$ can decrypt **Security:** ct computationally hides m if adversary does not have a key for an identity $id \in S$

[WW25]

Commit(pp,
$$M$$
) $\rightarrow C \in \mathbb{Z}_q^{n \times m}$
Open(pp, M) $\rightarrow Z \in \mathbb{Z}_q^{n \times L}$
Public parameters: pp , $A_0 \leftarrow \mathbb{Z}_q^{n \times m}$, $p \leftarrow \mathbb{Z}_q^n$
Key generation (for identity $i \leq L$): $r_i \leftarrow \{0,1\}^m$
pk_i = $t_i = Ar_i + p - A_0v_i \in \mathbb{Z}_q^n$ sk_i = r_i
Encryption (of message μ to public keys {pk_i}_{i \in S}):
Construct sparse public-key matrix $M \in \mathbb{Z}_q^L$
 i^{th} column of M is pk_i = t_i if $i \in S$ and 0 otherwise
 i^{th} column of M is pk_i = t_i if $i \in S$ and 0 otherwise
 C construct sparse public-key matrix $M \in \mathbb{Z}_q^L$
 i^{th} column of M is pk_i = t_i if $i \in S$ and 0 otherwise
 C struct sparse public keys (pk_i) struct sparse public-key matrix $M \in \mathbb{Z}_q^L$
 C struct sparse public hey struct sparse public-key matrix $M \in \mathbb{Z}_q^L$
 C struct sparse public hey struct spa

[WW25]

$$\begin{array}{c} \text{Commit}(\mathbf{pp}, M) \rightarrow \mathcal{C} \in \mathbb{Z}_q^{n \times m} \\ \text{Open}(\mathbf{pp}, M) \rightarrow \mathcal{Z} \in \mathbb{Z}_q^{m \times L} \end{array} \qquad \mathcal{C} \cdot \mathcal{V}_L = M - A \cdot \mathcal{Z} \\ \text{low-norm} \qquad \text{low-norm} \end{array}$$

 i^{th} column of **M** is $pk_i = t_i$ if $i \in S$ and **0** otherwise

[WW25]

$$\begin{bmatrix} \text{Commit}(\mathbf{pp}, M) \rightarrow C \in \mathbb{Z}_q^{n \times m} \\ \text{Open}(\mathbf{pp}, M) \rightarrow Z \in \mathbb{Z}_q^{m \times L} \end{bmatrix} \begin{bmatrix} C \cdot V_L = M - A \cdot Z_{\text{low-norm}} \\ \text{low-norm} \end{bmatrix}$$

$$\begin{bmatrix} \text{pk}_i = t_i = Ar_i + p - A_0 v_i \in \mathbb{Z}_q^n \\ \text{sk}_i = r_i \end{bmatrix} \begin{bmatrix} \text{Suppose } i \in S: \\ C \cdot v_i = t_i - A \cdot z_i \\ = Ar_i + p - A_0 v_i - Az_i \end{bmatrix}$$

$$\begin{bmatrix} C = \text{Commit}(\mathbf{pp}, M) \quad s \leftarrow \mathbb{Z}_q^n \\ \text{ST}A + e_1^T \\ (dual - Regev style) \\ s^T(A_0 + C) + e_2^T \\ s^Tp + e_3 + \mu \cdot \lfloor q/2 \rfloor \end{bmatrix} \begin{bmatrix} \text{Ciphertext} \\ \text{Ciphertext} \end{bmatrix} \begin{bmatrix} s^T A + e_1^T \\ (dual - Regev style) \\ s^T A + e_1^T \\ s^T A + e_1^T \end{bmatrix} \begin{bmatrix} ciphertext \\ c = S^T A (r_i - z_i) + S^T p \\ c = S^T A (r_i - z_i) \\ s^T A + e_1^T \end{bmatrix} \begin{bmatrix} ecover \\ s^T p \\ ecover \\ s^T p \end{bmatrix}$$

[WW25]

Commit(**pp**,
$$M$$
) $\rightarrow C \in \mathbb{Z}_q^{n \times m}$
Open(**pp**, M) $\rightarrow Z \in \mathbb{Z}_q^{m \times L}$

$$V \cdot V_L = M - A \cdot Z_{\text{low-norm}}$$

$\mathrm{pk}_i = \mathbf{t}_i = \mathbf{A}\mathbf{r}_i + \mathbf{p} - \mathbf{A}_0\mathbf{v}_i \in$	\mathbb{Z}_q^n
$\mathrm{sk}_i = r_i$	Public key

$$C = \text{Commit}(\mathbf{pp}, \mathbf{M})$$
 $s \leftarrow \mathbb{Z}_q^n$ $s^T \mathbf{A} + e_1^T$ (dual-Regev style) $s^T (\mathbf{A}_0 + \mathbf{C}) + e_2^T$ (dual-Regev style) $s^T \mathbf{p} + e_3 + \mu \cdot \lfloor q/2 \rfloor$ Ciphertext

 i^{th} column of **M** is $pk_i = t_i$ if $i \in S$ and **0** otherwise

Gives a selectively-secure distributed broadcast encryption scheme (for arbitrary number of users) and a transparent setup

Previously: only known from witness encryption or indistinguishability obfuscation

Generalizations:

- Adaptive security in the random oracle model
- Registered attribute-based encryption for unbounded number of users and succinct ciphertexts (in random oracle model)
 Not known from witness encryption!

Succinct Attribute-Based Encryption

$$\operatorname{Setup}(1^{\lambda}) \to (\operatorname{mpk}, \operatorname{msk})$$

- $KeyGen(msk, f) \rightarrow sk_f$
- Encrypt(mpk, x, m) \rightarrow ct_{x,m}

Key-policy ABE: Secret keys associated with functions $f: \{0,1\}^{\ell} \rightarrow \{0,1\}$

Ciphertexts associated with attributes $x \in \{0,1\}^{\ell}$

[Wee25]

Decrypt
$$(x, f, \operatorname{sk}_f, \operatorname{ct}_{x,m}) \rightarrow \begin{cases} m & f(x) = 0 \\ \bot & f(x) = 1 \end{cases}$$

Correctness: Can decryption when f(x) = 0**Security:** Message hidden when f(x) = 1

Succinctness: $|ct_{x,m}| = |m| + poly(\lambda, log|x|)$

In the following, we will allow for a depth dependence as well: $|ct_{x,m}| = |m| + poly(\lambda, d, log|x|)$, where d is the depth of the Boolean circuit computing f

Homomorphic Computation using Lattices

Encodes a vector $x \in \{0,1\}^{\ell}$ with respect to matrix $B = [B_1 | \cdots | B_{\ell}] \in \mathbb{Z}_q^{n \times \ell m}$

$$\boldsymbol{B}_1 - \boldsymbol{x}_1 \boldsymbol{G} \qquad \boldsymbol{B}_2 - \boldsymbol{x}_2 \boldsymbol{G} \qquad \cdots \qquad \boldsymbol{B}_\ell - \boldsymbol{x}_\ell \boldsymbol{G} \qquad \boldsymbol{B} - \boldsymbol{x}^{\mathrm{T}} \otimes \boldsymbol{G}$$

Given any function $f: \{0,1\}^{\ell} \to \{0,1\}$, there exists a low-norm matrix $H_{B,f,x}$ where

$$(B - x^{T} \otimes G) \cdot H_{B,f,x} = B_{f} - f(x) \cdot G$$

encoding of x with respect to B encoding of $f(x)$ with respect to B_{f}

Given **B** and f, can efficiently compute the matrix B_f

Attribute-Based Encryption

[BGGHNSVV14]

"dual Regev public key" attribute-encoding matrix **Public key:** $A \in \mathbb{Z}_q^{n \times m}, p \in \mathbb{Z}_q^n, B \in \mathbb{Z}_q^{n \times \ell m}$

Secret key for f: low-norm vector $v_f \in \mathbb{Z}^{2m}$ where $[A \mid B_f]v_f = p$

Ciphertext with attribute x: $s \leftarrow \mathbb{Z}_q^n$ $s^T A + e_1^T$ $s^T (B - x^T \otimes G) + e_2^T$ $s^T p + e_3 + \mu \cdot \lfloor q/2 \rfloor$ $(B - x^T \otimes G) \cdot H_{B,f,x} = B_f - f(x) \cdot G$ $s \leftarrow \mathbb{Z}_q^n$ $\approx [s^T A \mid s^T B_f] v_f$ $\approx s^T [A \mid B_f] v_f$ $\approx s^T p$

Attribute-Based Encryption

[BGGHNSVV14]

"dual Regev public key" attribute-encoding matrix **Public key:** $A \in \mathbb{Z}_q^{n \times m}$, $p \in \mathbb{Z}_q^n$, $B \in \mathbb{Z}_q^{n \times \ell m}$

Secret key for f: low-norm vector $v_f \in \mathbb{Z}^{2m}$ where $[A \mid B_f]v_f = p$

Ciphertext with attribute *x*:

 $\begin{vmatrix} s^{T}A + e_{1}^{T} \\ s^{T}(B - x^{T} \otimes G) + e_{2}^{T} \\ s^{T}p + e_{3} + \mu \cdot \lfloor q/2 \rfloor \end{vmatrix}$ Not succinct because $|B - x^{T} \otimes G| = \ell \cdot nm \log q$ Need to encode attribute to compute on it

$$(\boldsymbol{B} - \boldsymbol{x}^{\mathrm{T}} \otimes \boldsymbol{G}) \cdot \boldsymbol{H}_{\boldsymbol{B},f,\boldsymbol{x}} = \boldsymbol{B}_{f} - f(\boldsymbol{x}) \cdot \boldsymbol{G}$$

Succinct Attribute-Based Encryption

[Wee24, Wee25]

"dual Regev public key" attribute-encoding matrix **Public key:** $A \in \mathbb{Z}_{q}^{n \times m}$, $p \in \mathbb{Z}_{q}^{n}$, $B \in \mathbb{Z}_{q}^{n \times \ell m}$

Secret key for *f*: low-norm vector $v_f \in \mathbb{Z}^{2m}$ where $\begin{bmatrix} A & B_f \end{bmatrix} v_f = p$

Ciphertext with attribute *x*:

 $\begin{aligned} \mathbf{s}^{\mathrm{T}}\mathbf{A} + \mathbf{e}_{1}^{\mathrm{T}} \\ \mathbf{s}^{\mathrm{T}}(\mathbf{B} - \mathbf{x}^{\mathrm{T}} \otimes \mathbf{G}) + \mathbf{e}_{2}^{\mathrm{T}} \\ \mathbf{s}^{\mathrm{T}}\mathbf{p} + \mathbf{e}_{3} + \mu \cdot \lfloor q/2 \rfloor \end{aligned}$

[Wee24, Wee25] approach: compress $x^{\mathrm{T}} \otimes G$

- Let $C_x \in \mathbb{Z}_q^{n \times m}$ be a commitment to $x^T \otimes G$
- Then $C_x V = (x^{\mathrm{T}} \otimes G) AZ$
- Sample $\widetilde{B} \leftarrow \mathbb{Z}_q^{n \times m}$ and take $B = \widetilde{B}V \in \mathbb{Z}_q^{n \times \ell m}$
- Then $B x^{\mathrm{T}} \otimes G = \widetilde{B}V C_xV AZ$

$$(\boldsymbol{B} - \boldsymbol{x}^{\mathrm{T}} \otimes \boldsymbol{G}) \cdot \boldsymbol{H}_{\boldsymbol{B},f,\boldsymbol{x}} = \boldsymbol{B}_{f} - f(\boldsymbol{x}) \cdot \boldsymbol{G}$$

Succinct Attribute-Based Encryption

[Wee24, Wee25]

"dual Regev public key" attribute-encoding matrix
Public key:
$$A \in \mathbb{Z}_q^{n \times m}$$
, $p \in \mathbb{Z}_q^n$, $B \in \mathbb{Z}_q^{n \times \ell m} \longrightarrow \widetilde{B} \in \mathbb{Z}_q^{n \times m}$
public parameters independent of attribute length!
Secret key for f : low-norm vector $v_f \in \mathbb{Z}^{2m}$ where $[A \mid B_f]v_f = p$
Ciphertext with attribute x :
 $s^TA + e_1^T$
[Wee24, Wee25] approach: compress $x^T \otimes G$

- Let $m{\mathcal{C}}_{m{x}} \in \mathbb{Z}_q^{n imes m}$ be a commitment to $m{x}^{\mathrm{T}} \otimes m{G}$
- Then $C_x V = (x^{\mathrm{T}} \otimes G) AZ$
- Sample $\widetilde{B} \leftarrow \mathbb{Z}_q^{n \times m}$ and take $B = \widetilde{B}V \in \mathbb{Z}_q^{n \times \ell m}$
- Then $B x^{\mathrm{T}} \otimes G = \widetilde{B}V C_{x}V AZ$

$$(\boldsymbol{B} - \boldsymbol{x}^{\mathrm{T}} \otimes \boldsymbol{G}) \cdot \boldsymbol{H}_{\boldsymbol{B},f,\boldsymbol{x}} = \boldsymbol{B}_{f} - f(\boldsymbol{x}) \cdot \boldsymbol{G}$$

 $\mathbf{s}^{\mathrm{T}} (\mathbf{B} - \mathbf{x}^{\mathrm{T}} \otimes \mathbf{G}) + \mathbf{e}_{2}^{\mathrm{T}}$ $\mathbf{s}^{\mathrm{T}} \mathbf{p} + \mathbf{e}_{3} + \mu \cdot \lfloor q/2 \rfloor$

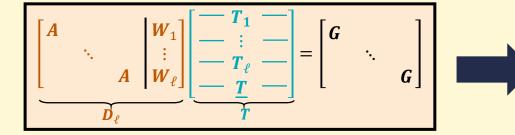
Succinct Attribute-Based Encryption

[Wee24, Wee25]

"dual Regev public key" attribute-encoding matrix Public key: $A \in \mathbb{Z}_q^{n \times m}$, $p \in \mathbb{Z}_q^n$, $B \in \mathbb{Z}_q^{n \times \ell m} \longrightarrow \widetilde{B} \in \mathbb{Z}_q^{n \times m}$ public parameters independent of attribute length! Secret key for *f*: low-norm vector $v_f \in \mathbb{Z}^{2m}$ where $[A \mid B_f]v_f = p$ **Ciphertext with attribute** *x*: **Everything else unchanged!** $s^{\mathrm{T}}A + e_1^{\mathrm{T}}$ $s^{\mathrm{T}}(B - x^{\mathrm{T}} \otimes G) + e_2^{\mathrm{T}}$ [Wee24, Wee25] approach: compress $x^{\mathrm{T}} \otimes G$ • Let $C_x \in \mathbb{Z}_q^{n \times m}$ be a commitment to $x^{\mathrm{T}} \otimes G$ • Then $C_x V = (x^T \otimes G) - AZ$ $\mathbf{s}^{\mathrm{T}}(\widetilde{\mathbf{B}}-\mathbf{C}_{x})+\mathbf{e}_{2}^{\mathrm{T}}$ • Sample $\widetilde{B} \leftarrow \mathbb{Z}_q^{n \times m}$ and take $B = \widetilde{B}V \in \mathbb{Z}_q^{n \times \ell m}$ • Then $B - x^{\mathrm{T}} \otimes G = \widetilde{B}V - \underline{C}_{x}V - AZ$ $s^{\mathrm{T}}p + e_3 + \mu \cdot |q/2|$ **Correctness:**

$$(s^{\mathrm{T}}A)(-Z) + s^{\mathrm{T}}(\widetilde{B} - C_{x})V = s^{\mathrm{T}}(\widetilde{B}V - C_{x}V - AZ) = s^{\mathrm{T}}(B - x^{\mathrm{T}} \otimes G)$$

Roadmap



SIS/LWE holds with respect to A given D_{ℓ} , T

Matrix Commitments

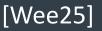
Commit(pp,
$$M$$
) $\rightarrow C \in \mathbb{Z}_q^{n \times m}$
Open(pp, M) $\rightarrow Z \in \mathbb{Z}_q^{m \times L}$
 $C \cdot V_L = M - A \cdot Z$

Functional commitments

Distributed broadcast encryption

KP/CP-ABE with succinct ciphertexts

Registered ABE for circuits

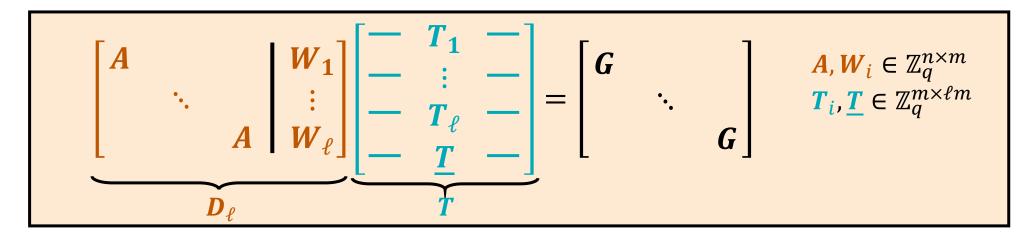


Succinct commitment to a matrix $M \in \mathbb{Z}_{q}^{n \times L}$

 $Commit(pp, M) \to C \in \mathbb{Z}_q^{n \times m}$ $\boldsymbol{C} \cdot \boldsymbol{V}_L = \boldsymbol{M} - \boldsymbol{A} \cdot \boldsymbol{Z}$ $\operatorname{Open}(\operatorname{pp}, M) \to Z \in \mathbb{Z}_a^{m \times L}$ low-norm

low-norm

Basic building block: the trapdoor from a succinct LWE instance



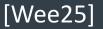
Succinct commitment to a matrix $M \in \mathbb{Z}_q^{n \times L}$

 $Commit(pp, M) \to C \in \mathbb{Z}_q^{n \times m}$ $\operatorname{Open}(\operatorname{pp}, M) \to Z \in \mathbb{Z}_q^{m \times L}$

$$V_L = M - A \cdot Z_{\text{low-norm}}$$

Starting point: commitment to $\mathbf{x}^{\mathrm{T}} \otimes \mathbf{G} = [x_1 \mathbf{G} \mid x_2 \mathbf{G} \mid \cdots \mid x_{\ell} \mathbf{G}]$ where $\mathbf{x} \in \{0,1\}^{\ell}$

$$\begin{bmatrix} x_{1}I \mid \cdots \mid x_{\ell}I \end{bmatrix} \begin{bmatrix} A & & & W_{1} \\ & \ddots & & \vdots \\ & & & W_{\ell} \end{bmatrix} \begin{bmatrix} T_{1} \\ \vdots \\ T_{\ell} \\ \underline{T} \end{bmatrix} = \begin{bmatrix} x_{1}I \mid \cdots \mid x_{\ell}I \end{bmatrix} \begin{bmatrix} G & & \\ & \ddots & \\ & & & G \end{bmatrix}$$
$$\underbrace{ \begin{bmatrix} x_{1}A \mid \cdots \mid x_{\ell}A \mid \Sigma_{i \in [\ell]}x_{i}W_{i} \end{bmatrix}} \begin{bmatrix} x_{1}G \mid \cdots \mid x_{\ell}G \end{bmatrix} = \mathbf{x}^{\mathrm{T}} \otimes G$$



Succinct commitment to a matrix $M \in \mathbb{Z}_q^{n \times L}$

Commit(pp, M) $\rightarrow C \in \mathbb{Z}_q^{n \times m}$ Open(pp, M) $\rightarrow Z \in \mathbb{Z}_q^{m \times L}$

$$C \cdot V_L = M - A \cdot Z_{\text{low-norm}}$$

Starting point: commitment to $x^T \otimes G = [x_1 G \mid x_2 G \mid \cdots \mid x_\ell G]$ where $x \in \{0,1\}^\ell$

$$\begin{bmatrix} x_1 A \mid \cdots \mid x_{\ell} A \mid \Sigma_{i \in [\ell]} x_i W_i \end{bmatrix} \begin{bmatrix} T_1 \\ \vdots \\ T_{\ell} \\ \underline{T} \end{bmatrix} = \begin{bmatrix} x_1 G \mid \cdots \mid x_{\ell} G \end{bmatrix} = \mathbf{x}^{\mathrm{T}} \otimes \mathbf{G}$$

Succinct commitment to a matrix $M \in \mathbb{Z}_q^{n \times L}$

Commit(pp, M) $\rightarrow C \in \mathbb{Z}_q^{n \times m}$ Open(pp, M) $\rightarrow Z \in \mathbb{Z}_q^{m \times L}$

$$C \cdot V_L = M - A \cdot Z_{\text{low-norm}}$$

Starting point: commitment to $x^T \otimes G = [x_1 G \mid x_2 G \mid \cdots \mid x_\ell G]$ where $x \in \{0,1\}^\ell$

$$\begin{bmatrix} x_1 A \mid \cdots \mid x_{\ell} A \mid \Sigma_{i \in [\ell]} x_i W_i \end{bmatrix} \begin{bmatrix} T_1 \\ \vdots \\ T_{\ell} \\ \underline{T} \end{bmatrix} = [x_1 G \mid \cdots \mid x_{\ell} G] = \mathbf{x}^{\mathrm{T}} \otimes G$$

$$\underbrace{A \cdot (\Sigma_{i \in [\ell]} x_i T_i) + (\Sigma_{i \in [\ell]} x_i W_i) \underline{T}}$$

Succinct commitment to a matrix $M \in \mathbb{Z}_q^{n \times L}$

Commit(pp,
$$M$$
) $\rightarrow C \in \mathbb{Z}_q^{n \times m}$
Open(pp, M) $\rightarrow Z \in \mathbb{Z}_q^{m \times L}$

$$C \cdot V_L = M - A \cdot Z_{\text{low-norm}}$$

Starting point: commitment to $\mathbf{x}^{\mathrm{T}} \otimes \mathbf{G} = [x_1 \mathbf{G} \mid x_2 \mathbf{G} \mid \cdots \mid x_{\ell} \mathbf{G}]$ where $\mathbf{x} \in \{0,1\}^{\ell}$

$$\boldsymbol{A} \cdot \left(\Sigma_{i \in [\ell]} \boldsymbol{x}_i \boldsymbol{T}_i \right) + \left(\Sigma_{i \in [\ell]} \boldsymbol{x}_i \boldsymbol{W}_i \right) \underline{\boldsymbol{T}} = [\boldsymbol{x}_1 \boldsymbol{G} | \cdots | \boldsymbol{x}_\ell \boldsymbol{G}] = \boldsymbol{x}^{\mathrm{T}} \otimes \boldsymbol{G}$$

Rearranging:

$$\begin{pmatrix} \Sigma_{i \in [\ell]} x_i W_i \end{pmatrix} \cdot \underline{T} = \mathbf{x}^{\mathrm{T}} \otimes \mathbf{G} - \mathbf{A} \cdot \begin{pmatrix} \Sigma_{i \in [\ell]} x_i T_i \end{pmatrix}$$

commitment opening

Note: *T*, *T*_{*i*} are blocks of the succinct LWE trapdoor, so they have low norm

Succinct commitment to a matrix $M \in \mathbb{Z}_q^{n \times L}$

Commit(pp, M) $\rightarrow C \in \mathbb{Z}_q^{n \times m}$ Open(pp, M) $\rightarrow Z \in \mathbb{Z}_q^{m \times L}$

$$C \cdot V_L = M - A \cdot Z_{low-norm}$$

Committing to a matrix $M \in \mathbb{Z}_q^{n \times m}$:

Compactification [BTVW17]: $(bits(M)^T \otimes G) \cdot (I_L \otimes vec(I_m)) = M$

bits(
$$M$$
) = vec($G^{-1}(M)$):
vectorization of bit
decomposition of M

vec(**M**): concatenation of the columns of **M**

Succinct commitment to a matrix $M \in \mathbb{Z}_q^{n \times L}$

Commit(pp, M) $\rightarrow C \in \mathbb{Z}_q^{n \times m}$ Open(pp, M) $\rightarrow Z \in \mathbb{Z}_q^{m \times L}$

$$C \cdot V_L = M - A \cdot Z_{\text{low-norm}}$$

Committing to a matrix $M \in \mathbb{Z}_q^{n \times m}$:

has small norm, only depends on dimension L, not M

Compactification [BTVW17]: $(bits(M)^T \otimes G) \cdot (I_L \otimes vec(I_m)) = M$

Commit to bits $(\mathbf{M})^{\mathrm{T}} \otimes \mathbf{G}$:

$$\boldsymbol{C} \cdot \underline{\boldsymbol{T}} = \operatorname{bits}(\boldsymbol{M})^{\mathrm{T}} \otimes \boldsymbol{G} - \boldsymbol{A} \cdot \boldsymbol{Z}'$$

Multiply by $I_L \otimes \text{vec}(I_m)$:

 $\boldsymbol{C} \cdot \underline{\boldsymbol{T}} \cdot (\boldsymbol{I}_L \otimes \operatorname{vec}(\boldsymbol{I}_m)) = (\operatorname{bits}(\boldsymbol{M})^{\mathrm{T}} \otimes \boldsymbol{G})(\boldsymbol{I}_L \otimes \operatorname{vec}(\boldsymbol{I}_m)) - \boldsymbol{A} \cdot \boldsymbol{Z}' \cdot (\boldsymbol{I}_L \otimes \operatorname{vec}(\boldsymbol{I}_m))$

Succinct commitment to a matrix $M \in \mathbb{Z}_q^{n \times L}$

Commit(pp, M) $\rightarrow C \in \mathbb{Z}_q^{n \times m}$ Open(pp, M) $\rightarrow Z \in \mathbb{Z}_q^{m \times L}$

$$C \cdot V_L = M - A \cdot Z_{\text{low-norm}}$$

Committing to a matrix $M \in \mathbb{Z}_{q}^{n \times m}$:

has small norm, only depends on dimension L, not M

Compactification [BTVW17]: $(bits(M)^T \otimes G) \cdot (I_L \otimes vec(I_m)) = M$

Commit to bits $(\mathbf{M})^{\mathrm{T}} \otimes \mathbf{G}$:

$$\boldsymbol{C} \cdot \boldsymbol{\underline{T}} = \operatorname{bits}(\boldsymbol{M})^{\mathrm{T}} \otimes \boldsymbol{G} - \boldsymbol{A} \cdot \boldsymbol{Z}'$$

$$\boldsymbol{V}_L = \underline{\boldsymbol{T}}(\boldsymbol{I}_L \otimes \operatorname{vec}(\boldsymbol{I}_m))$$

Multiply by $I_L \otimes \text{vec}(I_m)$:

 $\boldsymbol{C} \cdot \underline{\boldsymbol{T}} \cdot (\boldsymbol{I}_L \otimes \operatorname{vec}(\boldsymbol{I}_m)) = (\operatorname{bits}(\boldsymbol{M})^{\mathrm{T}} \otimes \boldsymbol{G})(\boldsymbol{I}_L \otimes \operatorname{vec}(\boldsymbol{I}_m)) - \boldsymbol{A} \cdot \boldsymbol{Z}' \cdot (\boldsymbol{I}_L \otimes \operatorname{vec}(\boldsymbol{I}_m))$

Succinct commitment to a matrix $M \in \mathbb{Z}_q^{n \times L}$

Commit(pp, M) $\rightarrow C \in \mathbb{Z}_q^{n \times m}$ Open(pp, M) $\rightarrow Z \in \mathbb{Z}_q^{m \times L}$

$$C \cdot V_L = M - A \cdot Z_{\text{low-norm}}$$

Committing to a matrix $M \in \mathbb{Z}_{q}^{n \times m}$:

has small norm, only depends on dimension L, not M

Compactification [BTVW17]: $(bits(M)^T \otimes G) \cdot (I_L \otimes vec(I_m)) = M$

Commit to bits $(\mathbf{M})^{\mathrm{T}} \otimes \mathbf{G}$:

$$\boldsymbol{C} \cdot \boldsymbol{\underline{T}} = \operatorname{bits}(\boldsymbol{M})^{\mathrm{T}} \otimes \boldsymbol{G} - \boldsymbol{A} \cdot \boldsymbol{Z}'$$

$$\boldsymbol{V}_L = \underline{\boldsymbol{T}}(\boldsymbol{I}_L \otimes \operatorname{vec}(\boldsymbol{I}_m))$$

Multiply by $I_L \otimes \text{vec}(I_m)$:

 $\boldsymbol{C} \cdot \boldsymbol{V}_{L} = (\operatorname{bits}(\boldsymbol{M})^{\mathrm{T}} \otimes \boldsymbol{G})(\boldsymbol{I}_{L} \otimes \operatorname{vec}(\boldsymbol{I}_{m})) - \boldsymbol{A} \cdot \boldsymbol{Z}' \cdot (\boldsymbol{I}_{L} \otimes \operatorname{vec}(\boldsymbol{I}_{m}))$

Succinct commitment to a matrix $M \in \mathbb{Z}_q^{n \times L}$

Commit(pp, M) $\rightarrow C \in \mathbb{Z}_q^{n \times m}$ Open(pp, M) $\rightarrow Z \in \mathbb{Z}_q^{m \times L}$

$$C \cdot V_L = M - A \cdot Z_{\text{low-norm}}$$

Committing to a matrix $M \in \mathbb{Z}_{q}^{n \times m}$:

has small norm, only depends on dimension L, not M

Compactification [BTVW17]: $(bits(M)^T \otimes G) \cdot (I_L \otimes vec(I_m)) = M$

Commit to bits $(\mathbf{M})^{\mathrm{T}} \otimes \mathbf{G}$:

$$\boldsymbol{C} \cdot \underline{\boldsymbol{T}} = \operatorname{bits}(\boldsymbol{M})^{\mathrm{T}} \otimes \boldsymbol{G} - \boldsymbol{A} \cdot \boldsymbol{Z}'$$

$$\boldsymbol{V}_L = \underline{\boldsymbol{T}}(\boldsymbol{I}_L \otimes \operatorname{vec}(\boldsymbol{I}_m))$$

Multiply by $I_L \otimes \text{vec}(I_m)$:

 $\boldsymbol{C} \cdot \boldsymbol{V}_L = \boldsymbol{M}$

 $-\mathbf{A}\cdot\mathbf{Z}'\cdot\left(\mathbf{I}_L\otimes\operatorname{vec}(\mathbf{I}_m)\right)$

Succinct commitment to a matrix $M \in \mathbb{Z}_q^{n \times L}$

Commit(pp, M) $\rightarrow C \in \mathbb{Z}_q^{n \times m}$ Open(pp, M) $\rightarrow Z \in \mathbb{Z}_q^{m \times L}$

$$C \cdot V_L = M - A \cdot Z_{low-norm}$$

Committing to a matrix $M \in \mathbb{Z}_{q}^{n \times m}$:

has small norm, only depends on dimension L, not M

Compactification [BTVW17]: $(bits(M)^T \otimes G) \cdot (I_L \otimes vec(I_m)) = M$

Commit to bits $(\mathbf{M})^{\mathrm{T}} \otimes \mathbf{G}$:

$$\boldsymbol{C} \cdot \boldsymbol{\underline{T}} = \operatorname{bits}(\boldsymbol{M})^{\mathrm{T}} \otimes \boldsymbol{G} - \boldsymbol{A} \cdot \boldsymbol{Z}'$$

Multiply by $I_L \otimes \text{vec}(I_m)$:

 $\boldsymbol{C} \cdot \boldsymbol{V}_L = \boldsymbol{M}$

$$V_L = \underline{T}(I_L \otimes \operatorname{vec}(I_m))$$

$$Z = Z'(I_L \otimes \operatorname{vec}(I_m))$$

$$-\mathbf{A}\cdot\mathbf{Z}'\cdot\left(\mathbf{I}_L\otimes\operatorname{vec}(\mathbf{I}_m)\right)$$

Succinct commitment to a matrix $M \in \mathbb{Z}_q^{n \times L}$

Commit(pp, M) $\rightarrow C \in \mathbb{Z}_q^{n \times m}$ Open(pp, M) $\rightarrow Z \in \mathbb{Z}_q^{m \times L}$

$$C \cdot V_L = M - A \cdot Z_{\text{low-norm}}$$

Committing to a matrix $M \in \mathbb{Z}_{q}^{n \times m}$:

has small norm, only depends on dimension L, not M

Compactification [BTVW17]: $(bits(M)^T \otimes G) \cdot (I_L \otimes vec(I_m)) = M$

Commit to bits $(\mathbf{M})^{\mathrm{T}} \otimes \mathbf{G}$:

$$\boldsymbol{C} \cdot \boldsymbol{\underline{T}} = \operatorname{bits}(\boldsymbol{M})^{\mathrm{T}} \otimes \boldsymbol{G} - \boldsymbol{A} \cdot \boldsymbol{Z}'$$

Multiply by $I_L \otimes \text{vec}(I_m)$:

 $\boldsymbol{C} \cdot \boldsymbol{V}_L = \boldsymbol{M}$

$$V_L = \underline{T}(I_L \otimes \operatorname{vec}(I_m))$$
$$Z = Z'(I_L \otimes \operatorname{vec}(I_m))$$

.

$$-\mathbf{A}\cdot\mathbf{Z}$$

Succinct commitment to a matrix $M \in \mathbb{Z}_q^{n \times L}$

Commit(pp,
$$M$$
) $\rightarrow C \in \mathbb{Z}_q^{n \times m}$
Open(pp, M) $\rightarrow Z \in \mathbb{Z}_q^{m \times L}$

$$C \cdot V_L = M - A \cdot Z_{\text{low-norm}}$$

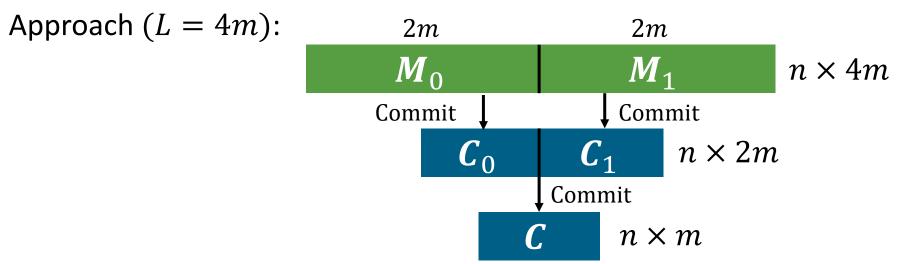
Recap:succinct LWE trapdoor ($\ell = Lm$)More compactly: $\begin{bmatrix} A & & & W_1 \\ \vdots & & I_{\ell} \end{bmatrix} \begin{bmatrix} T_1 \\ \vdots \\ T_{\ell} \end{bmatrix} = \begin{bmatrix} G & & \\ & \ddots & \\ & & & G \end{bmatrix}$ $\begin{bmatrix} I_{\ell} \otimes A \mid W \end{bmatrix} \begin{bmatrix} \overline{T} \\ \overline{T} \end{bmatrix} = I_{\ell} \otimes G$ $pp = (A, W, \overline{T}, \underline{T})$ $V_L = \underline{T}(I_L \otimes \text{vec}(I_m))$ $C = (\text{bits}(M)^T \otimes I_n)W$ $Z = (\text{bits}(M)^T \otimes I_n)\overline{T}(I_L \otimes \text{vec}(I_m))$

Succinct commitment to a matrix $M \in \mathbb{Z}_q^{n \times L}$

Commit(pp, M) $\rightarrow C \in \mathbb{Z}_q^{n \times m}$ Open(pp, M) $\rightarrow Z \in \mathbb{Z}_q^{m \times L}$ $C \cdot V_L = M - A \cdot Z_{\text{low-norm}}$ Iow-norm

Currently, to commit to $M \in \mathbb{Z}_q^{n \times L}$, need trapdoor of dimension $\ell = Lm$

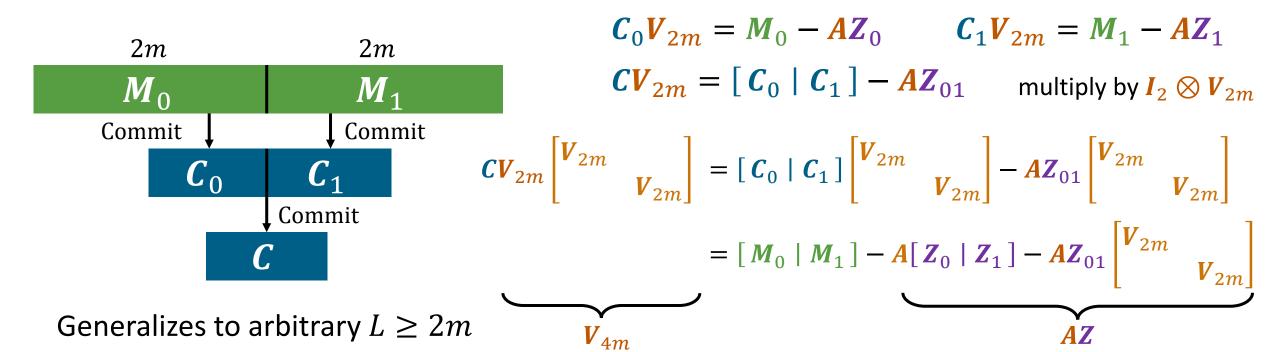
Sufficient to use trapdoor where $\ell = 2m^2$ (*independent* of *L*) by using Merkel-style recursion



Succinct commitment to a matrix $M \in \mathbb{Z}_q^{n \times L}$

Commit(**pp**,
$$M$$
) $\rightarrow C \in \mathbb{Z}_q^{n \times m}$
Open(**pp**, M) $\rightarrow Z \in \mathbb{Z}_q^{m \times L}$

$$C \cdot V_L = M - A \cdot Z_{low-norm}$$



Succinct commitment to a matrix $M \in \mathbb{Z}_q^{n \times L}$

Commit(pp, M) $\rightarrow C \in \mathbb{Z}_q^{n \times m}$ Open(pp, M) $\rightarrow Z \in \mathbb{Z}_q^{m \times L}$

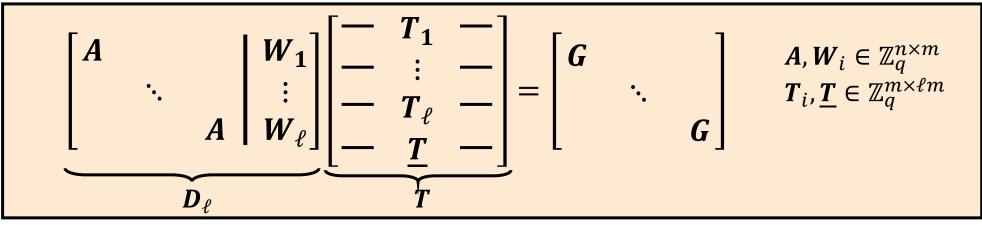
$$C \cdot V_L = M - A \cdot Z_{low-norm}$$

Merkle-style commitment

Public parameter size is **independent** of *L*

Can commit to sparse matrices of **exponential** width (e.g., $L = 2^{\lambda}$, but M contains $K = poly(\lambda)$ non-zero columns; running time of Commit and Open is poly(K))

Can realize from any assumption in the succinct LWE family



SIS/LWE holds with respect to A given D_ℓ , T

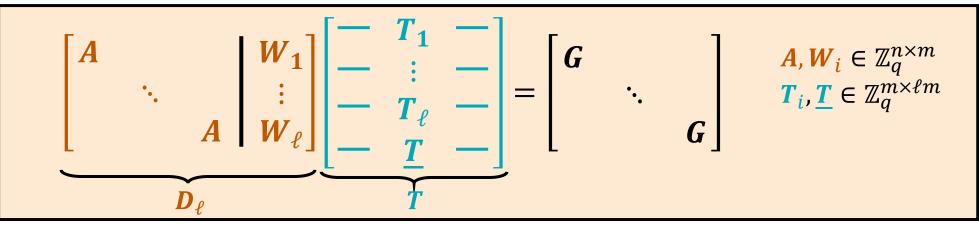
Public parameters pp is the matrix D_{ℓ} and the trapdoor T (for $\ell = 2m^2$)

With decomposed LWE, both D_{ℓ} , T can be described by a uniform random string; this means the public parameters pp can be sampled **transparently**

$$(\text{pp}, \boldsymbol{s}^{\mathrm{T}}\boldsymbol{A} + \boldsymbol{e}^{\mathrm{T}}) \approx (\text{pp}, \boldsymbol{u}^{\mathrm{T}})$$

Succinct LWE and Matrix Commitments

Succinct LWE assumption family:



SIS/LWE holds with respect to A given D_{ℓ} , T

Concrete instantiations (strongest to weakest): BASIS, succinct LWE, decomposed LWE

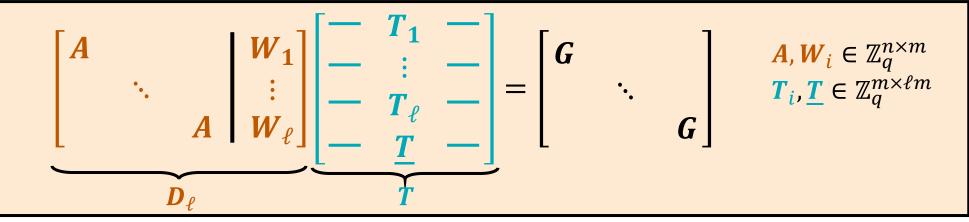
Matrix commitments provide a useful intermediary tool for building primitives

Commit(pp, M) $\rightarrow C \in \mathbb{Z}_q^{n \times m}$ Open(pp, M) $\rightarrow Z \in \mathbb{Z}_q^{m \times L}$

$$C \cdot V_L = M - A \cdot Z_{low-norm}$$

Succinct LWE and Matrix Commitments

Succinct LWE assumption family:



SIS/LWE holds with respect to A given D_{ℓ} , T

Concrete instantiations (strongest to weakest): BASIS, succinct LWE, decomposed LWE

Matrix commitments provide a useful intermediary tool for building primitives

Implications:

- Nearly-optimal KP/CP-ABE (including optimal broadcast encryption)
- Unbounded distributed broadcast encryption, succinct registered ABE for circuits

$$C \cdot V_L = M - A \cdot Z_{low-norm}$$

Open Problems

Show hardness of decomposed LWE (or another instance of succinct LWE) from

- Worst-case lattice problem
- Plain LWE assumption

Cryptanalysis of succinct LWE instances

Other primitives from succinct LWE:

- Succinct computational secret sharing
- Witness encryption
- Indistinguishability obfuscation

Thank you!