
Watermarking and Traitor Tracing for PRFs

David Wu

April 2020

based on joint work with Rishab Goyal, Sam Kim, and Brent Waters

Software Watermarking

CRYPTO

Embed a “mark” within a
program

If mark is removed, then
program is destroyed

Applications: proving software ownership,
preventing unauthorized distribution of software

[NSS99, BGIRSVY01, HMW07, CHNVW16]

Software Watermarking

CRYPTO

Embed a “mark” within a
program

If mark is removed, then
program is destroyed

Two main algorithms:
• Mark 𝐶,𝑚 → 𝐶′: Takes circuit 𝐶 and mark 𝑚 and outputs a marked circuit 𝐶′

• Extract 𝐶′ → 𝑚/⊥: Extracts the mark from a circuit 𝐶′

[NSS99, BGIRSVY01, HMW07, CHNVW16]

Software Watermarking

CRYPTO

Functionality-preserving: On input a circuit 𝐶 (and mark 𝑚),
the Mark algorithm outputs a circuit 𝐶′ where

𝐶 𝑥 = 𝐶′(𝑥)
on almost all inputs 𝑥

Mark

[NSS99, BGIRSVY01, HMW07, CHNVW16]

Software Watermarking

CRYPTO

Unremovability: Given a program 𝐶′ with mark 𝑚, no efficient
adversary can construct a circuit 𝐶∗ where

• 𝐶∗ 𝑥 = 𝐶′(𝑥) on almost all inputs 𝑥
• The circuit 𝐶∗ does not preserve the mark: Extract 𝐶∗ ≠ 𝑚

[NSS99, BGIRSVY01, HMW07, CHNVW16]

Software Watermarking

CRYPTO

Unremovability: Given a program 𝐶′ with mark 𝑚, no efficient
adversary can construct a circuit 𝐶∗ where

• 𝐶∗ 𝑥 = 𝐶′(𝑥) on almost all inputs 𝑥
• The circuit 𝐶∗ does not preserve the mark: Extract 𝐶∗ ≠ 𝑚

Adversary is very powerful: sees the code of the marked
program 𝐶′ and has complete flexibility in crafting 𝐶∗

[NSS99, BGIRSVY01, HMW07, CHNVW16]

Software Watermarking

CRYPTO

• Notion only achievable for functions that are not learnable
• Focus has been on cryptographic functions

Learning the original
(unmarked) function gives a

way to remove the watermark

[NSS99, BGIRSVY01, HMW07, CHNVW16]

pseudorandom
function

PRF(𝑘,⋅)

pseudorandom
function

PRF(𝑘,⋅)

Watermarking Cryptographic Programs

CRYPTO

Mark

Previous works: watermarking PRFs [CHNVW16, BLW17, KW17, QWZ18, KW19]

Suffices for watermarking other symmetric primitives:
(e.g., MAC signing key, symmetric decryption key)

A Closer Look at Watermarking Security

Unremovability: Given a program 𝐶′ with mark 𝑚, no efficient
adversary can construct a circuit 𝐶∗ where

• 𝐶∗ 𝑥 = 𝐶′(𝑥) on almost all inputs 𝑥
• The circuit 𝐶∗ does not preserve the mark: Extract 𝐶∗ ≠ 𝑚

on input 𝑥:
output PRF 𝑘, 𝑥

PRF(𝑘,⋅)

on input 𝑥:
output PRF 𝑘, 𝑥

PRF(𝑘,⋅)
Mark

CRYPTO

A Closer Look at Watermarking Security

Unremovability: Given a program 𝐶′ with mark 𝑚, no efficient
adversary can construct a circuit 𝐶∗ where

• 𝐶∗ 𝑥 = 𝐶′(𝑥) on almost all inputs 𝑥
• The circuit 𝐶∗ does not preserve the mark: Extract 𝐶∗ ≠ 𝑚

on input 𝑥:
output PRF 𝑘, 𝑥

PRF(𝑘,⋅)

CRYPTO

on input 𝑥:
output ȁPRF 𝑘, 𝑥 1,… Τ𝑛 4

PRF(𝑘,⋅)

CRYPTO
Outputs first 𝑛/4 bits of PRF

A Closer Look at Watermarking Security

Unremovability: Given a program 𝐶′ with mark 𝑚, no efficient
adversary can construct a circuit 𝐶∗ where

• 𝐶∗ 𝑥 = 𝐶′(𝑥) on almost all inputs 𝑥
• The circuit 𝐶∗ does not preserve the mark: Extract 𝐶∗ ≠ 𝑚

on input 𝑥:
output PRF 𝑘, 𝑥

PRF(𝑘,⋅)

CRYPTO

on input 𝑥:
output ȁPRF 𝑘, 𝑥 1,… Τ𝑛 4

PRF(𝑘,⋅)

CRYPTO
Outputs first 𝑛/4 bits of PRF

Adversary’s circuit does
not preserve functionality

A Closer Look at Watermarking Security

Unremovability: Given a program 𝐶′ with mark 𝑚, no efficient
adversary can construct a circuit 𝐶∗ where

• 𝐶∗ 𝑥 = 𝐶′(𝑥) on almost all inputs 𝑥
• The circuit 𝐶∗ does not preserve the mark: Extract 𝐶∗ ≠ 𝑚

on input 𝑥:
output PRF 𝑘, 𝑥

PRF(𝑘,⋅)

CRYPTO

on input 𝑥:
output ȁPRF 𝑘, 𝑥 1,… Τ𝑛 4

PRF(𝑘,⋅)

Outputs first 𝑛/4 bits of PRF

Adversary’s circuit does
not preserve functionality

No guarantees on whether the mark is preserved or not!

CRYPTO

A Closer Look at Watermarking Security

on input 𝑥:
output ȁPRF 𝑘, 𝑥 1,… Τ𝑛 4

PRF(𝑘,⋅)

CRYPTO

Suppose circuit that only outputs leading
𝑛/4 bits does not contain the watermark

Is this a problem?

Suppose watermarkable PRF used to
protect against unauthorized

distribution of decryption keys

Encrypted image
(PRF in counter mode)

Partial decryption
(using program on left)

Adversary’s program is “good enough” in most
settings, but may not preserve watermark

For building blocks like PRFs, we do not
necessarily need to recover exact

output to “break” functionality

A Closer Look at Watermarking Security

Suppose watermarkable PRF used to
protect against unauthorized

distribution of decryption keys

Encrypted image
(PRF in counter mode)

Partial decryption
(using program on left)

Adversary’s program is “good enough” in most
settings, but may not preserve watermark

Watermarking cryptographic programs:
• Exact functionality preserving does not

seem like the right security notion
• If adversary’s program can break the

primitive, then watermark should be
preserved

on input 𝑥:
output ȁPRF 𝑘, 𝑥 1,… Τ𝑛 4

PRF(𝑘,⋅)

CRYPTO

A Closer Look at Watermarking Security

Suppose watermarkable PRF used to
protect against unauthorized

distribution of decryption keys

Encrypted image
(PRF in counter mode)

Partial decryption
(using program on left)

Adversary’s program is “good enough” in most
settings, but may not preserve watermark

Watermarking cryptographic programs:
• Exact functionality preserving does not

seem like the right security notion
• If adversary’s program can break the

primitive, then watermark should be
preserved

on input 𝑥:
output ȁPRF 𝑘, 𝑥 1,… Τ𝑛 4

PRF(𝑘,⋅)

CRYPTO

Existing watermarking constructions
are unable to recover the watermark

from this type of program

Traceable PRFs

on input 𝑥:
output PRF 𝑘, 𝑥

PRF(𝑘,⋅)
PRF security:

PRF 𝑘,⋅ indistinguishable
from random function

on input 𝑥:
output PRF 𝑘, 𝑥

PRF(𝑘,⋅)

CRYPTO

Mark

Marking security (informal):
if program 𝐶 can distinguish

PRF 𝑘,⋅ from random, then mark
should be preserved

Traceable PRFs

on input 𝑥:
output PRF 𝑘, 𝑥

PRF(𝑘,⋅)

on input 𝑥:
output PRF 𝑘, 𝑥

PRF(𝑘,⋅)

CRYPTO

Mark

Marking security (informal):
if program 𝐶 can distinguish

PRF 𝑘,⋅ from random, then mark
should be preserved

Traitor tracing: if program can distinguish
ciphertexts, then mark is preserved

Traceable PRF: analog for PRFs

Traceable PRFs

Marking security (informal):
if program 𝐶 can distinguish PRF 𝑘,⋅

from random, then mark should be preserved

𝐶

PRF(𝑘, 𝑥)

𝑥

𝑓 𝑥

on input 𝑥:
output PRF 𝑘, 𝑥

PRF(𝑘,⋅)

CRYPTO

pseudorandom

random
𝑥

Problematic because 𝐶 could have

𝑥∗, PRF 𝑘, 𝑥∗ hard-wired

Traceable PRFs

Marking security (informal):
if program 𝐶 can distinguish PRF 𝑘,⋅ from random

on randomly sampled inputs, then mark should be preserved

𝐶

on input 𝑥:
output PRF 𝑘, 𝑥

PRF(𝑘,⋅)

CRYPTO

pseudorandom

random

𝑥 ← 𝒳

𝑥, PRF 𝑘, 𝑥

𝑥 ← 𝒳

𝑥, 𝑓 𝑥
Distinguisher can see arbitrarily

many input-output pairs

Traceable PRFs

Marking security (informal):
if program 𝐶 can break weak pseudorandomness

of PRF 𝑘,⋅ , then mark should be preserved

𝐶

on input 𝑥:
output PRF 𝑘, 𝑥

PRF(𝑘,⋅)

CRYPTO

pseudorandom

random

𝑥 ← 𝒳

𝑥, PRF 𝑘, 𝑥

𝑥 ← 𝒳

𝑥, 𝑓 𝑥
Distinguisher can see arbitrarily

many input-output pairs

Traceable PRFs

Setup 1𝜆 → msk, tk

KeyGen msk, id → skid

Eval sk, 𝑥 → 𝑦

Trace𝐷 tk → 𝑇 ⊆ 0,1 ℓ

msk: master PRF key
tk: tracing key (can be public or secret)

embeds id ∈ 0,1 ℓ into the key

sk can be either msk or skid

tracing algorithm given oracle access to
weak PRF distinguisher

Traceable PRFs

Setup 1𝜆 → msk, tk

KeyGen msk, id → skid

Eval sk, 𝑥 → 𝑦

Trace𝐷 tk → 𝑇 ⊆ 0,1 ℓ

msk: master PRF key
tk: tracing key (can be public or secret)

embeds id ∈ 0,1 ℓ into the key

sk can be either msk or skid

tracing algorithm given oracle access to
weak PRF distinguisher

Tracing key is sampled with PRF key
(tracing algorithm needs to be able to

sample PRF evaluations)

Traceable PRFs

Correctness: marked and unmarked keys agree almost everywhere

Pr
𝑥←𝒳

Eval msk, 𝑥 = Eval skid, 𝑥 = 1 − negl 𝜆

Pseudorandomness: Eval msk,⋅ is pseudorandom

id

skid ← KeyGen(msk, id)

single-key setting

if 𝐷 breaks weak pseudorandomness of
Eval msk,⋅ with advantage 𝜀, then

Trace𝐷(tk) outputs id with probability ≈ 𝜀

Tracing Security:

𝐷

Traceable PRFs

Tracing Security:
id

skid ← KeyGen(msk, id)

𝐷

single-key setting

if 𝐷 breaks weak pseudorandomness of
Eval msk,⋅ with advantage 𝜀, then

Trace𝐷(tk) outputs id with probability ≈ 𝜀

Traceable PRF directly implies secret-key traitor tracing (via nonce-based encryption)

Encrypt 𝑘,𝑚 ≔ (𝑟, PRF 𝑘, 𝑟 ⊕𝑚)

Instantiate PRF with a traceable PRF

Not the case if we start with watermarkable PRF!

Assuming LWE, there exists a single-key traceable PRF with secret tracing

Traceable PRFs

Our results:

Assuming indistinguishability obfuscation and injective one-way functions,
there exists a fully collusion-resistant traceable PRF with public tracing

This talk

Notably: assumptions are the same as those needed for
watermarkable PRFs (and rely on similar building blocks)

Constructing Traceable PRFs

Rely on intermediate notion: private linear constrained PRF
(analog of private linear broadcast encryption from traitor tracing) [BSW06]

Constrain𝐶

PRF key Constrained key

Constrained PRF key: can be used to
evaluate at all points 𝑥 ∈ 𝒳 where 𝐶 𝑥 = 1

Constructing Traceable PRFs

Rely on intermediate notion: private linear constrained PRF
(analog of private linear broadcast encryption from traitor tracing) [BSW06]

Constrain𝐶

PRF key Constrained key

Linear constraint family:
• Some PRF inputs are associated with a (secret) index 𝑡 between 0 and 2ℓ

• Constrained key associated with id ∈ 0, 2ℓ − 1 and can be used to

evaluate on inputs whose index 𝑡 satisfies 𝑡 ≤ id (or no index)

id

Privacy: index associated with
a domain element is hidden

Constructing Traceable PRFs

Rely on intermediate notion: private linear constrained PRF
(analog of private linear broadcast encryption from traitor tracing) [BSW06]

id

Can decrypt input points
with indices 𝑡 ≤ id

𝑥 input point

“hidden” index 𝑡

0 2ℓid

can evaluate cannot evaluate

index 𝑡 (for PRF domain element)

Constructing Traceable PRFs

Rely on intermediate notion: private linear constrained PRF
(analog of private linear broadcast encryption from traitor tracing) [BSW06]

0 2ℓid

can evaluate cannot evaluate

There exists a sampling algorithm to sample
inputs with a specified index (could be secret-key algorithm)

Normal hiding: domain element with index 0 indistinguishable from random domain elements

Identity hiding: domain elements with index 𝑖 and 𝑗 are indistinguishable without key for 𝑖 ≤ id < 𝑗

Pseudorandomness: PRF outputs on inputs with index 2ℓ are pseudorandom

(all of the properties should hold given constrained keys)

Constructing Traceable PRFs

0 2ℓid

can evaluate cannot evaluate

Tracing idea:
Assumption: Distinguisher 𝐷 can break weak pseudorandomness with advantage 𝜀

Inputs with index 0 are
indistinguishable from

random inputs, so decoder
has advantage 𝜀

Inputs with index 2ℓ are
pseudorandom, so

decoder has advantage 0

𝑖 𝑗

Distinguishing advantage
changes negligibly when

id ∉ [𝑖, 𝑗 − 1]

Implication: There must be a jump somewhere, and can only appear at id

Normal hiding Identity hiding Pseudorandomness

Constructing Private Linear Constrained PRF

Starting point: standard constrained PRF

Constrain𝐶
id

Let domain 𝒳 = 0,1 ℓ

𝐶id 𝑡 = ቊ
0, 𝑡 > id
1, 𝑡 ≤ id

Can decrypt input
points with tags 𝑡 ≤ id

Problem: indices for domain
element are public

Constructing Private Linear Constrained PRF

Starting point: standard constrained PRF

Constrain𝐶
id

Let domain 𝒳 = 𝒞𝒯 (ciphertext space for symmetric encryption scheme)

Can decrypt input points
corresponding to inputs that
encrypt index greater than id

Solution: Encrypt indices

𝐶𝑘,id ct = ቊ
0,
1,

Decrypt 𝑘, ct > id

otherwise
𝑘: decryption key

Constructing Private Linear Constrained PRF

Starting point: standard constrained PRF

Constrain𝐶
id

Let domain 𝒳 = 𝒞𝒯

Can decrypt input points
corresponding to inputs that
encrypt index greater than id

𝐶𝑘,id ct = ቊ
0,
1,

Decrypt 𝑘, ct > id

otherwise
𝑘: decryption key

Problem: constrained key might
leak 𝑘 which leaks indices

Constructing Private Linear Constrained PRF

Starting point: standard constrained PRF

Constrain𝐶
id

Let domain 𝒳 = 𝒞𝒯

Can decrypt input points
corresponding to inputs that
encrypt index greater than id

𝐶𝑘,id ct = ቊ
0,
1,

Decrypt 𝑘, ct > id

otherwise
𝑘: decryption key

Solution: use a private
constrained PRF (constrained key

hides constraint) [BLW17, CC17]

Constructing Traceable PRFs

Rely on intermediate notion: private linear constrained PRF
(analog of private linear broadcast encryption from traitor tracing) [BSW06]

Normal hiding: domain element with index 0 indistinguishable from random domain elements

Constrain𝐶
id

𝐶𝑘,id ct = ቊ
0,
1,

Decrypt 𝑘, ct > id

otherwise

Holds as long as encryption scheme has pseudorandom ciphertexts
(and constrained key hides secret key)

Constructing Traceable PRFs

Rely on intermediate notion: private linear constrained PRF
(analog of private linear broadcast encryption from traitor tracing) [BSW06]

Identity hiding: domain elements with index 𝑖 and 𝑗 are indistinguishable without key for 𝑖 ≤ id < 𝑗

Constrain𝐶
id

𝐶𝑘,id ct = ቊ
0,
1,

Decrypt 𝑘, ct > id

otherwise

Holds as long as encryption scheme is semantically secure
(and constrained key hides secret key)

Constructing Traceable PRFs

Rely on intermediate notion: private linear constrained PRF
(analog of private linear broadcast encryption from traitor tracing) [BSW06]

Pseudorandomness: PRF outputs on inputs with index 2ℓ are pseudorandom

Constrain𝐶
id

𝐶𝑘,id ct = ቊ
0,
1,

Decrypt 𝑘, ct > id

otherwise

Holds by constrained security of constrained PRF

(constraint function always false if id = 2ℓ)

Constructing Traceable PRFs

Rely on intermediate notion: private linear constrained PRF
(analog of private linear broadcast encryption from traitor tracing) [BSW06]

Constrain𝐶
id

𝐶𝑘,id ct = ቊ
0,
1,

Decrypt 𝑘, ct > id

otherwise

private constrained PRF

symmetric encryption

private linear constrained PRF
(with secret sampling)

traceable PRF
(with secret tracing)

LWE

single-key
single-key single-key

Public tracing: need a way to sample PRF evaluations (both inputs and outputs)

Unclear how to do so via private constrained PRFs, possible using
indistinguishability obfuscation (with full collusion-resistance)

Traceable PRF Summary

on input 𝑥:
output PRF 𝑘, 𝑥

PRF(𝑘,⋅)

on input 𝑥:
output PRF 𝑘, 𝑥

PRF(𝑘,⋅)
Mark

CRYPTO

Unremovability: Any program that can distinguish PRF outputs (on
random inputs) must preserve the watermark

More generally: when considering software watermarking, should not
always tie “functionality preserving” to “input-output preservation”

Traceable PRF Summary

Rely on intermediate notion: private linear constrained PRF
(analog of private linear broadcast encryption from traitor tracing) [BSW06]

Constrain𝐶
id

𝐶𝑘,id ct = ቊ
0,
1,

Decrypt 𝑘, ct > id

otherwise

LWE
private constrained PRF

symmetric encryption

single-key

private linear constrained PRF
(with secret sampling)

single-key

traceable PRF
(with secret tracing)

single-key

https://eprint.iacr.org/2020/316

Private Constrained PRFs from Lattices

Overview of Brakerski-Vaikuntanathan and Brakerski-Tsabury-Vaikuntanathan-Wee
constructions

Lattice-Based PRFs
[BPR12, BLMR13, BP14]

𝑨, 𝒔𝑇𝑨 + 𝒆𝑇 ≈ 𝑨, 𝒖𝑇

Learning with errors (LWE):

𝑨 ← ℤ𝑞
𝑛×𝑚, 𝒔 ← ℤ𝑞

𝑛, 𝒆 ← 𝜒𝑚, 𝒖 ← ℤ𝑞
𝑚

Learning with rounding (LWR) [BPR12]:

𝑨, ہ 𝒔𝑇𝑨ۀ 𝑝 ≈ 𝑨, 𝒖𝑇

Replace error with deterministic rounding

𝑨 ← ℤ𝑞
𝑛×𝑚, 𝒔 ← ℤ𝑞

𝑛, 𝒖 ← ℤ𝑝
𝑚

Lattice-Based PRFs
[BPR12, BLMR13, BP14]

Learning with rounding (LWR) [BPR12]:

𝑨, ہ 𝒔𝑇𝑨ۀ 𝑝 ≈ 𝑨, 𝒖𝑇

replace error with deterministic rounding

General blueprint for lattice PRFs:
PRF family define by collection of public parameters: 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞

𝑛×𝑚

PRF key: 𝒔 ← ℤ𝑞
𝑛

PRF evaluation at 𝑥: 𝑨1, … , 𝑨ℓ, 𝑥 ↦ 𝑨𝑥

PRF 𝒔, 𝑥 ≔ ہ 𝒔𝑇𝑨𝑥ۀ 𝑝

multiple ways to derive
𝑨𝑥 from 𝑨1, … , 𝑨ℓ

The GSW FHE Scheme
[GSW13]

pk: 𝑨 ∈ ℤ𝑞
𝑛×𝑚 sk: 𝒔 ∈ ℤ𝑞

𝑛

𝒔𝑇𝑨 = 𝒆𝑇 ≈ 𝟎𝑇

Ciphertext for 𝑥 ∈ 0,1 :

𝑨𝑥 = 𝑨𝑹 + 𝑥𝑮

Decryption:

𝒔𝑻𝑨𝑥 = 𝒔𝑇𝑨𝑹 + 𝑥 ⋅ 𝒔𝑇𝑮 ≈ 𝑥 ⋅ 𝒔𝑇𝑮

෩𝑨

෤𝒔𝑇෩𝑨 + 𝒆𝑇

Public key is an LWE matrix
(columns are LWE samples)

where 𝑹 is random short matrix

𝑨1 − 𝑥1𝑮 ⋯ 𝑨ℓ − 𝑥ℓ𝑮 𝑯𝑓,𝑥 = 𝑨𝑓 − 𝑓 𝑥 𝑮

𝑨1, … , 𝑨ℓ, 𝑓 ↦ 𝑨𝑓

The GSW/BGG+ Homomorphisms
[GSW13, BGGHNSVV14]

𝑨1 = 𝑨𝑹1 + 𝑥1𝑮 𝑨ℓ = 𝑨𝑹ℓ + 𝑥ℓ𝑮⋯

𝑨𝑓 = 𝑨𝑹𝑓,𝑥 + 𝑓 𝑥 𝑮 where 𝑹𝑓,𝑥 = 𝑹1 ⋯ 𝑹ℓ 𝑯𝑓,𝑥

and 𝑯𝑓,𝑥 is short

Input-independent evaluation:

𝑨𝑹1 ⋯ 𝑨𝑹ℓ 𝑯𝑓,𝑥 = 𝑨𝑹𝑓,𝑥

Input-dependent evaluation:

Function of
𝑨1, … , 𝑨ℓ, 𝑓, 𝑥

Lattice-Based Constrained PRFs
[BV15]

Public parameters: 𝑨1, … , 𝑨ℓ ← ℤ𝑞
𝑛×𝑚

Domain: 𝒳 = 0,1 𝜌

Let 𝑈𝑥 𝑓 ≔ 𝑓(𝑥) be a universal circuit where 𝑓 = ℓ

PRF key: 𝒔 ← ℤ𝑞
𝑛

PRF evaluation at 𝑥:

𝑨1, … , 𝑨ℓ, 𝑥 ↦ 𝑨𝑈𝑥

PRF 𝒔, 𝑥 ≔ උ ඇ𝒔𝑇𝑨𝑈𝑥 𝑝

Constrained key for 𝑓:

𝒔𝑇 𝑨1 − 𝑓1 ⋅ 𝑮 ⋯ 𝑨ℓ − 𝑓ℓ ⋅ 𝑮 + 𝒆𝑇

Constrained evaluation at 𝑥:

𝒔𝑇 𝑨1 − 𝑓1 ⋅ 𝑮 ⋯ 𝑨ℓ − 𝑓ℓ ⋅ 𝑮 𝑯𝑈𝑥,𝑓 + 𝒆𝑇𝑯𝑈𝑥,𝑓

≈ 𝒔𝑇 𝑨𝑈𝑥 − 𝑓 𝑥 ⋅ 𝑮

= 𝒔𝑇𝑨𝑈𝑥 when 𝑓 𝑥 = 0

can evaluate at 𝑥 where 𝑓 𝑥 = 0

to argue pseudorandomness, need to also multiply
by 𝐺−1(𝑫) where 𝑫 is part of public parameters

Lattice-Based Constrained PRFs
[BV15]

Public parameters: 𝑨1, … , 𝑨ℓ ← ℤ𝑞
𝑛×𝑚

Domain: 𝒳 = 0,1 𝜌

Let 𝑈𝑥 𝑓 ≔ 𝑓(𝑥) be a universal circuit where 𝑓 = ℓ

PRF key: 𝒔 ← ℤ𝑞
𝑛

PRF evaluation at 𝑥:

𝑨1, … , 𝑨ℓ, 𝑥 ↦ 𝑨𝑈𝑥

PRF 𝒔, 𝑥 ≔ උ ඇ𝒔𝑇𝑨𝑈𝑥 𝑝

constrained key for 𝑓:

𝒔𝑇 𝑨1 − 𝑓1 ⋅ 𝑮 ⋯ 𝑨ℓ − 𝑓ℓ ⋅ 𝑮 + 𝒆𝑇

Constrained evaluation at 𝑥:

𝒔𝑇 𝑨1 − 𝑓1 ⋅ 𝑮 ⋯ 𝑨ℓ − 𝑓ℓ ⋅ 𝑮 𝑯𝑈𝑥,𝑓 + 𝒆𝑇𝑯𝑈𝑥,𝑓

≈ 𝒔𝑇 𝑨𝑈𝑥 − 𝑓 𝑥 ⋅ 𝑮

≈ 𝒔𝑇𝑨𝑈𝑥 when 𝑓 𝑥 = 0

Computing 𝑯𝑈𝑥,𝑓 requires knowledge of 𝑓

(construction does not hide the constraint)

Lattice-Based Private Constrained PRFs

Constrained key for 𝑓:

𝒔𝑇 𝑨1 − መ𝑓1 ⋅ 𝑮 ⋯ 𝑨ℓ − መ𝑓𝐿 ⋅ 𝑮 + 𝒆𝑇

Constrained evaluation at 𝑥:

𝒔𝑇 𝑨1 − መ𝑓1 ⋅ 𝑮 ⋯ 𝑨ℓ − መ𝑓𝐿 ⋅ 𝑮 𝑯෡𝑈𝑥, መ𝑓
+ 𝒆𝑇𝑯෡𝑈𝑥, መ𝑓

≈ 𝒔𝑇 𝑨෡𝑈𝑥
− ෡𝑈𝑥 መ𝑓 ⋅ 𝑮

[BTVW17]

Approach: encrypt the function 𝑓 using an FHE scheme, and homomorphically evaluate 𝑈𝑥

መ𝑓 ≔ Encrypt(pk, 𝑓) መ𝑓 = 𝐿

෡𝑈𝑥 መ𝑓 ≔ FHE. Eval pk, 𝑈𝑥 , መ𝑓 Homomorphic evaluation of 𝑈𝑥 on 𝑓

Problem: ෡𝑈𝑥 መ𝑓 is a bit of the encryption of 𝑓(𝑥), not 𝑓(𝑥)

Lattice-Based Private Constrained PRFs
[BTVW17]

Straightforward to generalize homomorphic operations to matrix-valued functions:

𝑨1 − 𝑥1𝑮 ⋯ 𝑨ℓ − 𝑥ℓ𝑮 𝑯𝑓,𝑥 = 𝑨𝑓 − 𝑿𝑓

𝑨1, … , 𝑨ℓ, 𝑓 ↦ 𝑨𝑓

𝑨1 − 𝑥1𝑮 ⋯ 𝑨ℓ − 𝑥ℓ𝑮 𝑯𝑓,𝑥 = 𝑨𝑓 − 𝑓 𝑥 𝑮

𝑨1, … , 𝑨ℓ, 𝑓 ↦ 𝑨𝑓 𝑓: 0,1 ℓ ↦ 𝑏 ∈ 0,1

𝑓: 0,1 ℓ ↦ 𝑿𝑓 ∈ ℤ𝑞
𝑛×𝑚

Idea: compute 𝑿𝑓 bit-by-bit, and multiply encoding of the 𝑘th bit of the 𝑗th component

of 𝑿𝑓 by 𝐺−1 2𝑘𝑬𝑗 , where 𝑬𝑗 is 1 in the 𝑗th component and 0 everywhere else

The GSW FHE Scheme
[GSW13]

Recall GSW decryption:

Ciphertext for 𝑥 ∈ 0,1 : 𝑨𝑥 = 𝑨𝑹 + 𝑥𝑮

Decryption: 𝒔𝑇𝑨𝑥 = 𝒔𝑇𝑨𝑹 + 𝑥 ⋅ 𝒔𝑇𝑮 = 𝑥 ⋅ 𝒔𝑇𝑮 + error

Property: Multiplying secret key with ciphertext yields encoding of the plaintext message

Lattice-Based Private Constrained PRFs

Constrained key for 𝑓:

𝒔𝑇 𝑨1 − መ𝑓1 ⋅ 𝑮 ⋯ 𝑨ℓ − መ𝑓𝐿 ⋅ 𝑮 + 𝒆𝑇

Constrained evaluation at 𝑥:

𝒔𝑇 𝑨1 − መ𝑓1 ⋅ 𝑮 ⋯ 𝑨ℓ − መ𝑓𝐿 ⋅ 𝑮 𝑯෡𝑈𝑥, መ𝑓
+ 𝒆𝑇𝑯෡𝑈𝑥, መ𝑓

≈ 𝒔𝑇 𝑨෡𝑈𝑥
− ෡𝑈𝑥 መ𝑓

≈ 𝒔𝑇 𝑨෡𝑈𝑥
− 𝑓 𝑥 ⋅ 𝑮

[BTVW17]

Approach: encrypt the function 𝑓 using an FHE scheme, and homomorphically evaluate 𝑈𝑥

መ𝑓 ≔ Encrypt(pk, 𝑓) መ𝑓 = 𝐿

෡𝑈𝑥 መ𝑓 ≔ FHE. Eval pk, 𝑈𝑥 , መ𝑓 Homomorphic evaluation of 𝑈𝑥 on 𝑓

Insight: If 𝒔 is also the secret key for the GSW
encryption scheme, then

𝒔𝑇 ෡𝑈𝑥 መ𝑓 = 𝑓 𝑥 ⋅ 𝒔𝑇𝑮+ error

Define ෡𝑈𝑥 መ𝑓 to output the GSW

ciphertext (matrix-valued) obtained from
homomorphic evaluation

Lattice-Based Private Constrained PRFs

Constrained key for 𝑓:

𝒔𝑇 𝑨1 − መ𝑓1 ⋅ 𝑮 ⋯ 𝑨ℓ − መ𝑓𝐿 ⋅ 𝑮 + 𝒆𝑇

Constrained evaluation at 𝑥:

𝒔𝑇 𝑨1 − መ𝑓1 ⋅ 𝑮 ⋯ 𝑨ℓ − መ𝑓𝐿 ⋅ 𝑮 𝑯෡𝑈𝑥, መ𝑓
+ 𝒆𝑇𝑯෡𝑈𝑥, መ𝑓

≈ 𝒔𝑇 𝑨෡𝑈𝑥
− ෡𝑈𝑥 መ𝑓

≈ 𝒔𝑇 𝑨෡𝑈𝑥
− 𝑓 𝑥 ⋅ 𝑮

[BTVW17]

Approach: encrypt the function 𝑓 using an FHE scheme, and homomorphically evaluate 𝑈𝑥

መ𝑓 ≔ Encrypt(pk, 𝑓) መ𝑓 = 𝐿

෡𝑈𝑥 መ𝑓 ≔ FHE. Eval pk, 𝑈𝑥 , መ𝑓 Homomorphic evaluation of 𝑈𝑥 on 𝑓

Define ෡𝑈𝑥 መ𝑓 to output the GSW

ciphertext (matrix-valued) obtained from
homomorphic evaluation

Some tweaks needed to argue security
(see [BTVW17] for full details)

Summary

𝑨1 − 𝑥1𝑮 ⋯ 𝑨ℓ − 𝑥ℓ𝑮 𝑯𝑓,𝑥 = 𝑨𝑓 − 𝑓 𝑥 𝑮

𝑨1, … , 𝑨ℓ, 𝑓 ↦ 𝑨𝑓

Input-independent evaluation:

Input-dependent evaluation:

PRF evaluation

constrained evaluation

Constraint privacy:
• Encrypt constraint using GSW FHE scheme
• LWE secret reused for PRF secret key and FHE secret key

Thank you!

