
Part I: Constraining PRFs Privately

David Wu
Stanford University

Joint work with Dan Boneh and Kevin Lewi

Pseudorandom Functions (PRFs) [GGM84]

𝐹: 𝒦 ×𝒳 → 𝒴

≈𝑐

𝑥 ∈ 𝒳

𝐹 𝑘, 𝑥

𝑘
R
𝒦

Pseudorandom

𝑏

𝑥 ∈ 𝒳

𝑓(𝑥)

𝑓
R
Funs[𝒳,𝒴]

Random

𝑏

Constrained PRFs [BW13, BGI13, KPTZ13]

𝐹: 𝒦 ×𝒳 → 𝒴

Constrained PRF: PRF with additional “constrain”
functionality

Constrain𝐶

PRF key constrained key

can be used to evaluate at all
points 𝑥 ∈ 𝒳 where 𝐶 𝑥 = 1

Constrained PRFs [BW13, BGI13, KPTZ13]

Constrain𝐶

Correctness: constrained evaluation at 𝑥 ∈ 𝒳
where 𝐶 𝑥 = 1 yields PRF value at 𝑥

Security: PRF value at points 𝑥 ∈ 𝒳 where
𝐶 𝑥 = 0 are indistinguishable from random

Constrained PRFs [BW13, BGI13, KPTZ13]

Constrain𝐶

Many applications:
• Identity-Based Key Exchange, Optimal Broadcast

Encryption [BW13]
•Punctured Programming Paradigm [SW14]
•Multiparty Key Exchange, Traitor Tracing [BZ14]

Puncturable PRFs from GGM

𝑠

𝑠0 𝑠1

𝐺 𝑠 = 𝑠0 ∥ 𝑠1

𝑠00 𝑠01 𝑠10 𝑠11

𝐺 𝑠0 = 𝑠00 ∥ 𝑠01 𝐺 𝑠1 = 𝑠10 ∥ 𝑠11

• Puncturable PRF: constrained keys allow evaluation at all but
a single point

• Easily constructed from GGM:

Puncturable PRFs from GGM

𝑠

𝑠0 𝑠1

𝐺 𝑠 = 𝑠0 ∥ 𝑠1

𝑠00 𝑠01 𝑠10 𝑠11

𝐺 𝑠0 = 𝑠00 ∥ 𝑠01 𝐺 𝑠1 = 𝑠10 ∥ 𝑠11

puncture at 𝑥 = 01

Puncturable PRFs from GGM

𝑠

𝑠0 𝑠1

𝐺 𝑠 = 𝑠0 ∥ 𝑠1

𝑠00 𝑠01 𝑠10 𝑠11

𝐺 𝑠0 = 𝑠00 ∥ 𝑠01 𝐺 𝑠1 = 𝑠10 ∥ 𝑠11

these two values suffice to evaluate at all other
points

Puncturable PRFs from GGM

𝑠

𝑠0 𝑠1

𝐺 𝑠 = 𝑠0 ∥ 𝑠1

𝑠00 𝑠01 𝑠10 𝑠11

𝐺 𝑠0 = 𝑠00 ∥ 𝑠01 𝐺 𝑠1 = 𝑠10 ∥ 𝑠11

given 𝑠1 and 𝑠00, easy to tell that 01 is the
punctured point

Constraining PRFs Privately

Constrain𝐶

Can we build a constrained PRF where the
constrained key for a circuit 𝐶 hides 𝐶?

msk sk𝐶

Constraining PRFs Privately

≈𝑐

𝐶0, 𝐶1

Constrain(msk, 𝐶0)

msk Setup 1𝜆

World 0

𝑏

𝐶0, 𝐶1

World 1

𝑏

Constrain(msk, 𝐶1)

msk Setup 1𝜆

Single-key privacy Definitions generalize to multi-key privacy. See paper for details.

Private Puncturing

•Correctness: constrained evaluation at 𝑥 ≠ 𝑧

yields 𝐹 𝑘, 𝑥

•Security: 𝐹(𝑘, 𝑧) is indistinguishable from random

•Privacy: constrained key hides 𝑧

Puncture𝑧
msk sk𝑧

Implications of Privacy

Consider value of ConstrainEval(sk𝑧, 𝑧):

•Security: Independent of Eval(msk, 𝑧)

•Privacy: Unguessable by the adversary

Puncture𝑧
msk sk𝑧

Using Privacy: Restricted Keyword Search

PRF𝑘(Honeycomb) → 5,8,13
PRF𝑘(KitKat) → 18, 21
PRF𝑘(Lollipop) → 3,10,11
PRF𝑘 Marshmallow → {1,9,22}

server with
encrypted index

key issuer

ConstrainEval(sk, Honeycomb)

5,8,13

skMarshmallow

msk

create index

Using Privacy: Restricted Keyword Search

PRF𝑘(Honeycomb) → 5,8,13
PRF𝑘(KitKat) → 18, 21
PRF𝑘(Lollipop) → 3,10,11
PRF𝑘 Marshmallow → {1,9,22}

server with
encrypted index

ConstrainEval(sk, Jelly Bean)

No results

search for non-existent
keyword

Using Privacy: Restricted Keyword Search

PRF𝑘(Honeycomb) → 5,8,13
PRF𝑘(KitKat) → 18, 21
PRF𝑘(Lollipop) → 3,10,11
PRF𝑘 Marshmallow → {1,9,22}

server with
encrypted index

ConstrainEval(sk,Marshmallow)

No results

search for “restricted”
keyword

Using Privacy: Restricted Keyword Search

PRF𝑘(Honeycomb) → 5,8,13
PRF𝑘(KitKat) → 18, 21
PRF𝑘(Lollipop) → 3,10,11
PRF𝑘 Marshmallow → {1,9,22}

server with
encrypted index

ConstrainEval(sk,Marshmallow)

No results

• Security: ConstrainEval sk,Marshmallow ≠

Eval msk,Marshmallow

• Privacy: Does not learn that no results were

returned because no matches for keyword or if

the keyword was restricted

The Many Applications of Privacy

• Private constrained MACs
• Parties can only sign messages satisfying certain policy (e.g., enforce a

spending limit), but policies are hidden

• Symmetric Deniable Encryption [CDNO97]
• Two parties can communicate using a symmetric encryption scheme

• If an adversary has intercepted a sequence of messages and coerces one of
the parties to produce a decryption key for the messages, they can produce a
“fake” key that decrypts all but a subset of the messages

• Constructing a family of watermarkable PRFs
• Can be used to embed a secret message within a PRF that is “unremovable” –

useful for authentication [CHNVW15]

See paper for details!

Summary of our Constructions

• From indistinguishability obfuscation (iO):
• Private puncturable PRFs from iO + one-way functions
• Private circuit constrained PRFs from sub-exponentially

hard iO + one-way functions

• From concrete assumptions on multilinear maps:
• Private puncturable PRFs from subgroup hiding

assumptions
• Private bit-fixing PRF from multilinear Diffie-Hellman

assumption

This talk

See paper

Constructing Private Constrained PRFs

Tool: indistinguishability obfuscation [BGI+01, GGH+13]

Program 𝑃1 Program 𝑃2

iO iO

iO(𝑃1) ≈𝑐 iO(𝑃2)

iO(𝑃1) iO(𝑃2)

∀𝑥 ∶ 𝑃1 𝑥 = 𝑃2(𝑥)

Private Puncturing from iO

•Starting point: puncturable PRFs (e.g. GGM)

•Need a way to hide the point that is punctured
• Intuition: obfuscate the puncturable PRF

•Question: what value to output at the punctured
point?

Private Puncturing from iO

Use iO to hide the punctured point and output
uniformly random value at punctured point

𝑃𝑧(𝑥):
• If 𝑥 = 𝑧, output 𝑟
• Else, output PRF(𝑘, 𝑥)

Program for punctured PRF
(punctured at 𝑧)

real value of
the PRF

random value
(hard coded)

Private Puncturing from iO

Suppose PRF is puncturable (e.g., GGM)
• Master secret key: PRF key 𝑘
• PRF output at 𝑥 ∈ 𝒳: PRF 𝑘, 𝑥

Punctured key for a point 𝑧 is an obfuscated program

Constrained evaluation corresponds to evaluating obfuscated
program

𝑃𝑧(𝑥):
• If 𝑥 = 𝑧, output 𝑟
• Else, output PRF(𝑘, 𝑥)

iO

Private Puncturing from iO: Privacy

Recall privacy notion:

≈𝑐

𝑥0, 𝑥1 ∈ 𝒳

Puncture(𝑘, 𝑥0)

msk Setup 1𝜆

World 0

𝑏

𝑥0, 𝑥1 ∈ 𝒳

World 1

𝑏

Puncture(𝑘, 𝑥1)

msk Setup 1𝜆

Private Puncturing from iO: Privacy

Proof is simple exercise in punctured programming

𝑃𝑧(𝑥):
• If 𝑥 = 𝑧, output 𝑟
• Else, output PRF(𝑘, 𝑥)

Program for punctured PRF
(punctured at 𝑧)

real value of
the PRF

random value
(hard coded)

Private Puncturing from iO: Privacy

𝑃𝑥0(𝑥):

• If 𝑥 = 𝑥0, output 𝑟
• Else, output PRF(𝑘, 𝑥)

≈𝑐iO iO

Hybrid 0: Real game Hybrid 1: Challenger
responds to puncture
query with iO of this

program

𝑃𝑥0
′ (𝑥):

• If 𝑥 = 𝑥0, output 𝑟
• Else, output PRF(𝑘𝑥0 , 𝑥)

𝑘𝑥0: 𝑘 punctured at 𝑥0

Private Puncturing from iO: Privacy

Hybrid 1 Hybrid 2

iO iO≈𝑐

Invoke puncturing security

𝑃𝑥0
′′ (𝑥):

• If 𝑥 = 𝑥0, output PRF(𝑘, 𝑥0)
• Else, output PRF(𝑘𝑥0 , 𝑥)

𝑃𝑥0
′ (𝑥):

• If 𝑥 = 𝑥0, output 𝑟
• Else, output PRF(𝑘𝑥0 , 𝑥)

Private Puncturing from iO: Privacy

Hybrid 2 Hybrid 3

iO iO≈𝑐

Invoke iO security

𝑃𝑥0
′′′(𝑥):

• Output PRF(𝑘, 𝑥)

𝑃𝑥0
′′ (𝑥):

• If 𝑥 = 𝑥0, output PRF(𝑘, 𝑥0)
• Else, output PRF(𝑘𝑥0 , 𝑥)

The program in Hybrid 3 is independent of 𝑥0. Similar
argument holds starting from 𝑃𝑥1(𝑥).

Private Puncturing from iO: Summary

Use iO to hide the punctured point and output
uniformly random value at punctured point

𝑃𝑧(𝑥):
• If 𝑥 = 𝑧, output 𝑟
• Else, output PRF(𝑘, 𝑥)

Private Circuit Constrained PRF from iO

Construction generalizes to circuit constraints, except
random values now derived from another PRF

𝑃𝐶(𝑥):
• If 𝐶 𝑥 = 0, output PRF(𝑘′, 𝑥)
• If 𝐶 𝑥 = 1, output PRF(𝑘, 𝑥)

𝑘′ is independently
sampled PRF key

“real” PRF value

Private Circuit Constrained PRF from iO

Recall intuitive requirements for
private constrained PRF:

• Security: Values at constrained

points independent of actual

PRF value at those points

• Privacy: Values at constrained

points are unguessable by the

adversary

𝑃𝐶(𝑥):
• If 𝐶 𝑥 = 0, output PRF(𝑘′, 𝑥)
• If 𝐶 𝑥 = 1, output PRF(𝑘, 𝑥)

Private Circuit Constrained PRF from iO

Security proof similar to that for
private puncturable PRF

Number of hybrids equal to
number of points that differ
across the two circuits, so sub-
exponential hardness needed in
general

𝑃𝐶(𝑥):
• If 𝐶 𝑥 = 0, output PRF(𝑘′, 𝑥)
• If 𝐶 𝑥 = 1, output PRF(𝑘, 𝑥)

Private Puncturing from Multilinear Maps

•Composite-order (ideal) multilinear maps* [BS04]
• Fix composite modulus 𝑁 = 𝑝𝑞

• Base group 𝔾1 and target group 𝔾𝑛 (of order 𝑁) with
canonical generators 𝑔1 and 𝑔𝑛, respectively

• Multilinear map operation:
𝑒 𝑔1

𝛼1 , 𝑔1
𝛼2 , … , 𝑔1

𝛼𝑛 = 𝑔𝑛
𝛼1𝛼2⋯𝛼𝑛

For simplicity, we describe our construction using ideal multilinear maps. It is straightforward to translate our
construction to use composite-order graded multilinear encodings [CLT13]

*

Private Puncturing from Multilinear Maps

•Composite-order (ideal) multilinear maps [BS04]
• Let 𝔾1,𝑝 be subgroup of order 𝑝 of 𝔾1

• Subgroup decision assumption [BGN05]: hard to
distinguish random elements of the full group 𝔾1 from
random elements of the subgroup 𝔾1,𝑝

Private Puncturing from Multilinear Maps

Starting point: multilinear analog of Naor-Reingold [NR97,
BW13]

𝑔1
𝛼1,0

𝑔1
𝛼1,1

𝑔1
𝛼2,0

𝑔1
𝛼2,1

⋯

⋯

𝑔1
𝛼𝑛,0

𝑔1
𝛼𝑛,1

master secret
key:

collection of 2𝑛 random group elements
from 𝔾1

Private Puncturing from Multilinear Maps

PRF evaluation via multilinear map

𝑔1
𝛼1,0

𝑔1
𝛼1,1

𝑔1
𝛼2,0

𝑔1
𝛼2,1

𝑔1
𝛼4,0

𝑔1
𝛼4,1

𝑔1
𝛼3,0

𝑔1
𝛼3,1

𝑔1
𝛼5,0

𝑔1
𝛼5,1

Private Puncturing from Multilinear Maps

PRF evaluation via multilinear map

𝑔1
𝛼1,0

𝑔1
𝛼1,1

𝑔1
𝛼2,0

𝑔1
𝛼2,1

𝑔1
𝛼4,0

𝑔1
𝛼4,1

𝑔1
𝛼3,0

𝑔1
𝛼3,1

𝑔1
𝛼5,0

𝑔1
𝛼5,1

𝐹𝑘 01101 = 𝑒 𝑔1
𝛼1,0 , 𝑔1

𝛼2,1, 𝑔1
𝛼3,1, 𝑔1

𝛼4,0, 𝑔1
𝛼5,1

Private Puncturing from Multilinear Maps

Puncture PRF by exploiting orthogonality

master secret
key:

𝑔1,𝑝
𝛼1,0

𝑔1,𝑝
𝛼1,1

𝑔1,𝑝
𝛼2,0

𝑔1,𝑝
𝛼2,1

𝑔1,𝑝
𝛼4,0

𝑔1,𝑝
𝛼4,1

𝑔1,𝑝
𝛼3,0

𝑔1,𝑝
𝛼3,1

𝑔1,𝑝
𝛼5,0

𝑔1,𝑝
𝛼5,1

puncture at
01101:

𝑔1
𝛼1,0

𝑔1,𝑝
𝛼1,1

𝑔1,𝑝
𝛼2,0

𝑔1
𝛼2,1

𝑔1
𝛼4,0

𝑔1,𝑝
𝛼4,1

𝑔1,𝑝
𝛼3,0

𝑔1
𝛼3,1

𝑔1,𝑝
𝛼5,0

𝑔1
𝛼5,1

all elements in subgroup

punctured components in full group

Private Puncturing from Multilinear Maps

Correctness

puncture at
𝑥∗ = 01101:

𝑔1
𝛼1,0

𝑔1,𝑝
𝛼1,1

𝑔1,𝑝
𝛼2,0

𝑔1
𝛼2,1

𝑔1
𝛼4,0

𝑔1,𝑝
𝛼4,1

𝑔1,𝑝
𝛼3,0

𝑔1
𝛼3,1

𝑔1,𝑝
𝛼5,0

𝑔1
𝛼5,1

Correctness by multilinearity (and CRT):

𝑒 𝑔1
𝛽1 , … , 𝑔1

𝛽𝑛 = 𝑒 𝑔1,𝑝, … , 𝑔1,𝑝
𝛽1⋯𝛽𝑛 mod 𝑝

𝑒 𝑔1,𝑞 , … , 𝑔1,𝑞
𝛽1⋯𝛽𝑛 mod 𝑞

For all 𝑥 ≠ 𝑥∗, there is some 𝑖 where 𝑥𝑖 ≠ 𝑥𝑖
∗ so 𝛽𝑖,𝑥𝑖

∗ = 0 (mod 𝑞)

where 𝑔𝛽𝑖,0 , 𝑔𝛽𝑖,1 is the 𝑖th component of the secret key

Private Puncturing from Multilinear Maps

Privacy

puncture at
𝑥∗ = 01101:

𝑔1
𝛼1,0

𝑔1,𝑝
𝛼1,1

𝑔1,𝑝
𝛼2,0

𝑔1
𝛼2,1

𝑔1
𝛼4,0

𝑔1,𝑝
𝛼4,1

𝑔1,𝑝
𝛼3,0

𝑔1
𝛼3,1

𝑔1,𝑝
𝛼5,0

𝑔1
𝛼5,1

Follows directly by subgroup decision: elements of 𝔾1 look
indistinguishable from elements of 𝔾1,𝑝

Private Puncturing from Multilinear Maps

Puncturing Security

puncture at
𝑥∗ = 01101:

𝑔1
𝛼1,0

𝑔1,𝑝
𝛼1,1

𝑔1,𝑝
𝛼2,0

𝑔1
𝛼2,1

𝑔1
𝛼4,0

𝑔1,𝑝
𝛼4,1

𝑔1,𝑝
𝛼3,0

𝑔1
𝛼3,1

𝑔1,𝑝
𝛼5,0

𝑔1
𝛼5,1

Follows from a multilinear Diffie-Hellman subgroup decision
assumption on composite-order multilinear maps

See paper for details!

Private Puncturing and Distributed Point Functions [GI14]

Gen(1𝜆, 𝑥)

𝑘0 𝑘1

Eval 𝑘0, 𝑥
′ ⊕Eval 𝑘1, 𝑥

′ =
1, 𝑥′ = 𝑥
0, 𝑥′ ≠ 𝑥

Privacy: 𝑘0 and 𝑘1 individually
must hide 𝑥

Correctness: 𝑘0 and 𝑘1 implement a point function

Private Puncturing and Distributed Point Functions [GI14]

A private puncturable PRF can be used to build a distributed
point function (DPF):

Gen(1𝜆, 𝑥)

𝑘0 Setup 1𝜆 𝑘1 Puncture(𝑘0, 𝑥)

Correctness: Eval(𝑘0,⋅) and ConstrainEval(𝑘1,⋅) agree
everywhere except 𝑥

Privacy: 𝑘0 is independent of 𝑥 and 𝑘1 hides 𝑥

Private Puncturing and Distributed Point Functions [GI14]

However, distributed point functions do not give a private
puncturable PRF

Key difference:
• In a DPF, the point 𝑥 is known at setup time: both 𝑘0 and

𝑘1 are generated together
• In a private puncturable PRF, the point 𝑥 is known after

the master parameters (the key 𝑘0) are generated

Open question: Can constructions of DPFs be adapted to
obtain a private puncturable PRF?

Conclusions

•New notion of private constrained PRFs

• Simple definitions, but require powerful tools to
construct: iO / multilinear maps

•Private constrained PRFs immediately provide natural
solutions to many problems

Open Questions

• Puncturable PRFs (and DPFs) can be constructed from OWFs
• Can we construct private puncturable PRFs from OWFs?

• Does private puncturing necessitate strong assumptions like
multilinear maps?

• Can we construct private circuit-constrained PRFs without requiring
sub-exponentially hard iO?

• Most of our candidate applications just require private
puncturable PRFs
• New applications for more expressive families of constraints?

Part II: Practical Order-Revealing
Encryption with Limited Leakage

Joint work with Nathan Chenette, Kevin Lewi,
and Stephen A. Weis

Order-Revealing Encryption [BLRSZZ15]

Client Server

sk
ct1 = Enc(sk, 123)
ct2 = Enc(sk, 512)
ct3 = Enc(sk, 273)

secret-key encryption scheme

Order-Revealing Encryption [BLRSZZ15]

Server

ct1 = Enc(sk, 123)
ct2 = Enc(sk, 512)
ct3 = Enc(sk, 273)

Which is greater:
the value encrypted
by ct1 or the value
encrypted by ct2?

Application: range
queries / binary search

on encrypted data

Order-Revealing Encryption [BLRSZZ15]

ct1 = Enc(sk, 𝑥) ct2 = Enc(sk, 𝑦)

𝑥 > 𝑦

given any two ciphertexts

there is a publically
evaluatable function

that evaluates the
comparison function

Defining Security

Starting point: semantic security (IND-CPA) [GM84]

𝑏 ∈ 0,1

semantic security: adversary cannot guess 𝑏 (except with
probability negligibly close to 1/2)

𝑚0
𝑖
, 𝑚1

𝑖
∈ ℳ

𝑏′

sk

Enc sk,𝑚𝑏
𝑖

challenger adversary

Best-Possible Security [BCLO09]

𝑚0
𝑖
, 𝑚1

𝑖
∈ ℳ

𝑏′

sk

𝑏 ∈ 0,1

Enc sk,𝑚𝑏
𝑖

must impose restriction on messages: otherwise trivial
to break semantic security using comparison operator

Best-Possible Security [BCLO09]

𝑚0
𝑖
, 𝑚1

𝑖
∈ ℳ

𝑏′

sk

𝑏 ∈ 0,1

Enc sk,𝑚𝑏
𝑖

∀𝑖, 𝑗:𝑚0
𝑖
< 𝑚0

𝑗
⟺ 𝑚1

𝑖
< 𝑚1

𝑗

Best-Possible Security [BCLO09]

𝑚0
𝑖
, 𝑚1

𝑖
∈ ℳ

𝑏′

sk

𝑏 ∈ 0,1

Enc sk,𝑚𝑏
𝑖

order of “left” set of messages same as order
of “right” set of messages

Existing Approaches

General-Purpose Multi-Input Functional Encryption
[GGGJKLSSZ14, BV15, AJ15]

• Powerful cryptographic primitive that fully subsumes
ORE

• Achieves best-possible security
• Impractical (requires obfuscating a PRF)

Existing Approaches

Multilinear-map-based Solution [BLRSZZ15]
• Much more efficient than general purpose

indistinguishability obfuscation
• Achieves best-possible security
• Security of multilinear maps not well-understood
• Still quite inefficient (e.g., ciphertexts on the order of GB)

Existing Approaches

Order-preserving encryption (OPE) [BCLO09, BCO11]:
• Comparison operation is direct comparison of

ciphertexts:
𝑥 > 𝑦 ⟺ Enc sk, 𝑥 > Enc(sk, 𝑦)

• Lower bound: no OPE scheme can satisfy “best-possible”
security unless the size of the ciphertext space is
exponential in the size of the plaintext space

Existing Approaches

Order-preserving encryption (OPE) [BCLO09, BCO11]:
• No “best-possible” security, so instead, compare with

random order-preserving function (ROPF)

encryption function
implements a random

order-preserving function
domain range

Existing Approaches

Properties of a random order-preserving function
[BCO’11]:

• Each ciphertext roughly leaks half of the most significant
bits

• Each pair of ciphertexts roughly leaks half of the most
significant bits of their difference

No semantic security for
even a single message!

Existing Approaches

Security

Ef
fi

ci
en

cy

General-purpose
MIFE from iO

Direct construction
from multilinear maps

OPE

Something in
between?

Not drawn to scale

A New Security Notion

Two existing security notions:
• IND-OCPA: strong security, but hard to achieve efficiently
• ROPF-CCA: efficiently constructible, but lots of leakage,

and difficult to precisely quantify the leakage

A New Security Notion: SIM-ORE

Idea: augment “best-possible” security with a leakage function ℒ

𝑚1 𝑚1 ∣ ℒ 𝑚1

Enc sk,𝑚1 ct1

sk

𝑚2

Enc sk,𝑚2

𝑚2 ∣ ℒ 𝑚1, 𝑚2

ct2

⋮ ⋮

???

Real World Ideal World

A New Security Notion: SIM-ORE

Similar to SSE definitions [CM05, CGKO06]

Leakage functions specifies exactly what is leaked

“Best-possible” simulation security:

ℒ 𝑚1, … ,𝑚𝑞 = 𝟏 𝑚𝑖 < 𝑚𝑗 1 ≤ 𝑖 < 𝑗 ≤ 𝑞

A New Security Notion: SIM-ORE

“Best-possible” simulation security:

ℒ 𝑚1, … ,𝑚𝑞 = 1 𝑚𝑖 < 𝑚𝑗 1 ≤ 𝑖 < 𝑗 ≤ 𝑞

Anything that can be computed given the ciphertexts can
be computed given the ordering on the messages

Our Construction

Leak a little more than just the ordering:

ℒ 𝑚1, … ,𝑚𝑞 = 1 𝑚𝑖 < 𝑚𝑗 , inddiff 𝑚𝑖 , 𝑚𝑗 1 ≤ 𝑖 < 𝑗 ≤ 𝑞

1 0 0 1 0 1

1 0 0 0 1 1

inddiff(𝑚1, 𝑚2): index of
first bit that differs

Our Construction

1 0 0 1 0 1

For each index 𝑖, apply a
PRF to the first 𝑖 − 1 bits,

then add 𝑏𝑖 (mod 𝑛)𝐹: 𝒦 × 0,1 ∗ → ℤ3

Our Construction

1 0 0 1 0 1

𝐹𝑘(𝜖) + 1

For each index 𝑖, apply a
PRF to the first 𝑖 − 1 bits,

then add 𝑏𝑖 (mod 𝑛)𝐹: 𝒦 × 0,1 ∗ → ℤ3

empty prefix

Our Construction

1 0 0 1 0 1

𝐹𝑘(𝜖) + 1

𝐹𝑘(1) + 0 For each index 𝑖, apply a
PRF to the first 𝑖 − 1 bits,

then add 𝑏𝑖 (mod 𝑛)𝐹: 𝒦 × 0,1 ∗ → ℤ3

Our Construction

1 0 0 1 0 1

𝐹𝑘(𝜖) + 1

𝐹𝑘(1) + 0

𝐹𝑘(10) + 0

For each index 𝑖, apply a
PRF to the first 𝑖 − 1 bits,

then add 𝑏𝑖 (mod 𝑛)𝐹: 𝒦 × 0,1 ∗ → ℤ3

Our Construction

1 0 0 1 0 1

𝐹𝑘(𝜖) + 1 𝐹𝑘(1) + 0 𝐹𝑘(10) + 0 𝐹𝑘(100) + 1 𝐹𝑘(1001) + 0 𝐹𝑘(10010) + 1

𝐹𝑘(𝜖) + 1 𝐹𝑘(1) + 0 𝐹𝑘(10) + 0 𝐹𝑘(100) + 0 𝐹𝑘(1000) + 1 𝐹𝑘(10001) + 1

1 0 0 0 1 1

same prefix = same
ciphertext block

different prefix = value
computationally hidden

first block
that differs

compare values (mod 𝑛)
to determine ordering

Our Construction: Security

1 0 0 1 0 1

𝐹𝑘(𝜖) + 1 𝐹𝑘(1) + 0 𝐹𝑘(10) + 0 𝐹𝑘(100) + 1 𝐹𝑘(1001) + 0 𝐹𝑘(10010) + 1

Security follows directly from security of the PRF

Proof sketch. Simulator responds to encryption queries using
random strings. Maintains consistency using leakage
information (first bit that differs).

General-purpose
MIFE from iO

Direct construction
from multilinear maps

The Landscape of OPE/ORE

Security

Ef
fi

ci
en

cy

OPE

Our
construction

Not drawn to scale

General-purpose
MIFE from iO

Direct construction
from multilinear maps

Directions for Future Research

Security

Ef
fi

ci
en

cy

OPE

Our
construction

Shorter
ciphertexts?

New leakage
functions?

Best-possible ORE from
standard assumptions?

Not drawn to scale

Questions?

