
Functional Encryption: Deterministic 
to Randomized Functions from 

Simple Assumptions

Shashank Agrawal and David J. Wu



Public-Key Functional Encryption [BSW11, O’N10]

Keys are associated with 
deterministic functions 𝑓

𝑚 Decrypt(sk𝑓 , ct𝑚) 𝑓(𝑚)

𝑥

𝑓(𝑥)

sk𝑓

sk𝑓



Public-Key Functional Encryption [BSW11, O’N10]

• Setup 1𝜆 : Outputs (msk,mpk)

• KeyGen(msk, 𝑓): Outputs decryption key sk𝑓

• Encrypt mpk,𝑚 : Outputs ciphertext ct𝑚

• Decrypt(sk𝑓, ct𝑚): Outputs 𝑓 𝑚



Public-Key Functional Encryption [BSW11, O’N10]

• Setup 1𝜆 : Outputs (msk,mpk)

• KeyGen(msk, 𝑓): Outputs decryption key sk𝑓

• Encrypt mpk,𝑚 : Outputs ciphertext ct𝑚

• Decrypt(sk𝑓, ct𝑚): Outputs 𝑓 𝑚

Deterministic
function 𝑓



Functional Encryption for Randomized Functionalities (rFE) [GJKS15]

But what if 𝑓 is 
randomized?

Many interesting functions are 
randomized

𝑥

𝑓(𝑥 ; 𝑟)

𝑟



Application 1: Proxy Re-Encryption

Alice Alice

personal email

work email

Secretary

Mail server has functional key 
to re-encrypt message under 

secretary’s public key



Application 2: Auditing an Encrypted Database

Encrypted database of records

𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6

Sample a random 
subset to audit

𝑟2 𝑟6



Does Public-Key rFE Exist?

iO
General-

Purpose rFE

[GJKS15]

(selectively secure)



Public-Key Functional Encryption [BSW11, O’N10]

PKE / LWE
Bounded-

Collusion FE

Multilinear 
Maps / iO

General-
Purpose FE

[SS10, GVW12,GKPVZ13, …]

[GGHRSW13, GGHZ16, Wat15, …]

Can be instantiated from a wide range of assumptions



The State of (Public-Key) Functional Encryption

PKE
Bounded-

Collusion FE

Multilinear 
Maps / iO

General-
Purpose FE

Generally adaptively 
secure

iO
General-

Purpose rFE

Selectively secure

Deterministic functionalities Randomized functionalities
[SS10, GVW12, …]

[GGHRSW13, GGHZ16, … ]

[GJKS15]



The State of (Public-Key) Functional Encryption

PKE
Bounded-

Collusion FE

Multilinear 
Maps / iO

General-
Purpose FE

Adaptively secure

iO
General-

Purpose rFE

Selectively secure

Deterministic functionalities Randomized functionalities

Does extending FE to support 
randomized functionalities 

require much stronger tools?



Our Main Result

General-purpose FE 
for deterministic 

functionalities

Number Theory

(e.g., DDH, RSA)

General-purpose FE 
for randomized 
functionalities

Implication: randomized FE is not much more 
difficult to construct than standard FE.



Defining rFE



Defining Correctness for FE

Deterministic functionalities

𝑚 Decrypt(sk𝑓 , ct𝑚) 𝑓(𝑚)
sk𝑓



Defining Correctness for rFE [GJKS15]

Randomized functionalities

𝑚 Decrypt(sk𝑓 , ct𝑚) 𝑓(𝑚; 𝑟)
sk𝑓

𝑚′ Decrypt(sk𝑓 , ct𝑚′) 𝑓(𝑚′; 𝑟′)
sk𝑓

Same function 
key

Different 
ciphertexts

Independent draws 
from output 
distribution



Defining Correctness for rFE [GJKS15]

Randomized functionalities

𝑚 Decrypt(sk𝑓 , ct𝑚) 𝑓(𝑚; 𝑟)
sk𝑓

𝑚 Decrypt(sk𝑓′ , ct𝑚) 𝑓′(𝑚; 𝑟′)
sk𝑓′

Different 
function keys

Same 
ciphertexts

Independent draws 
from output 
distribution



Simulation-Based Security (Informally)

Real World: honestly 
generated ciphertexts 

and secret keys

Ideal World: 
simulated ciphertexts 

and secret keys

𝑚

sk𝑓𝑓

𝑓(𝑚)

𝑚

msk

𝑓

𝑚

sk𝑓



Simulation-based notion of security:

mpk mpk
msk 𝑓

KeyGen(msk, 𝑓)

𝑓 ∣ 𝑓

sk𝑓

???

Real World Ideal World

Public-Key Functional Encryption [BSW11, O’N10]

𝑚 𝑚 ∣ 𝑓1 𝑚 ,… , 𝑓𝑞1(𝑚)

𝑓

KeyGen(msk, 𝑓)

Encrypt(mpk,𝑚) ct𝑚

𝑓 ∣ 𝑓, 𝑓(𝑚)

sk𝑓



Selective security: adversary first commits to challenge

mpk mpk

msk

???

Real World Ideal World

Public-Key Functional Encryption [BSW11, O’N10]

𝑓

KeyGen(msk, 𝑓)

ct𝑚

𝑓 ∣ 𝑓, 𝑓(𝑚)

sk𝑓

𝑚

Encrypt(mpk,𝑚)

𝑚 ∣ 𝜀



Simulation-based notion of security:

mpk mpk
msk 𝑓

KeyGen(msk, 𝑓)

𝑓 ∣ 𝑓

sk𝑓

Real World Ideal World

Security for rFE

𝑚 𝑚 ∣ 𝑓1 𝑚 ,… , 𝑓𝑞1(𝑚)

𝑓

KeyGen(msk, 𝑓)

Encrypt(mpk,𝑚) ct𝑚

𝑓 ∣ 𝑓, 𝑓(𝑚)

sk𝑓

Function 𝑓 is a 
randomized function

Each function 
evaluated using freshly 
sampled randomness



Encrypted database of records

𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6

Sample a random 
subset to audit

𝑟2 𝑟6

What if 
encrypter (bank) 

is adversarial?

The Case for Malicious Encrypters



The Case for Malicious Encrypters

Randomized functionalities

𝑚 Decrypt(sk𝑓 , ct𝑚) 𝑓(𝑚; 𝑟)
sk𝑓

𝑚′ Decrypt(sk𝑓 , ct𝑚′) 𝑓(𝑚′; 𝑟)
sk𝑓

Dishonest encrypters can 
construct “bad” ciphertexts such 

that decryption produces 
correlated outputs



Capturing Dishonest Encrypters

Give the adversary access to a decryption oracle (a “CCA” like 
definition) [GJKS15]

msk

𝑚

ct, 𝑓 ∣ ct

sk𝑓 ← KeyGen(msk, 𝑓)

𝑚 ← Decrypt(sk𝑓 , ct)

ct, 𝑓



Capturing Dishonest Encrypters

Give the adversary access to a decryption oracle (a “CCA” like 
definition) [GJKS15]

msk

𝑚

ct, 𝑓 ∣ ct

sk𝑓 ← KeyGen(msk, 𝑓)

𝑚 ← Decrypt(sk𝑓 , ct)

ct, 𝑓

Simulator sees ciphertext 
and can make a single 

query to an ideal 
evaluation oracle 𝒪𝑓



Capturing Dishonest Encrypters

Give the adversary access to a decryption oracle (a “CCA” like 
definition) [GJKS15]

msk

𝑚

ct, 𝑓 ∣ ct

sk𝑓 ← KeyGen(msk, 𝑓)

𝑚 ← Decrypt(sk𝑓 , ct)

ct, 𝑓

𝑥
𝑓(𝑥)

Simulator sees ciphertext 
and can make a single 

query to an ideal 
evaluation oracle 𝒪𝑓



Capturing Dishonest Encrypters

Give the adversary access to a decryption oracle (a “CCA” like 
definition) [GJKS15]

msk

𝑚

ct, 𝑓 ∣ ct

sk𝑓 ← KeyGen(msk, 𝑓)

𝑚 ← Decrypt(sk𝑓 , ct)

ct, 𝑓

𝑥
𝑓(𝑥)

Ideal evaluation oracle 𝒪𝑓
takes an input 𝑥 and 

outputs random draw from 
output distribution 𝑓(𝑥)

Simulator sees ciphertext 
and can make a single 

query to an ideal 
evaluation oracle 𝒪𝑓



Capturing Dishonest Encrypters

Give the adversary access to a decryption oracle (a “CCA” like 
definition) [GJKS15]

msk

𝑚

ct, 𝑓 ∣ ct

sk𝑓 ← KeyGen(msk, 𝑓)

𝑚 ← Decrypt(sk𝑓 , ct)

ct, 𝑓

𝑥
𝑓(𝑥)

Note: in ideal world, distinguisher always sees a 
function evaluation using uniform randomness



Capturing Dishonest Encrypters

Give the adversary access to a decryption oracle (a “CCA” like 
definition) [GJKS15]

msk

𝑚

ct, 𝑓 ∣ ct

sk𝑓 ← KeyGen(msk, 𝑓)

𝑚 ← Decrypt(sk𝑓 , ct)

ct, 𝑓

𝑥
𝑓(𝑥)

Notion also well-defined in deterministic setting and 
is easily achieved by attaching a NIZK to ciphertext



Capturing Dishonest Encrypters

This work: Extend security model to allow adversary to submit multiple 
ciphertexts (rules out adversary’s ability to construct correlated
ciphertexts)

msk

𝑚1, … ,𝑚𝑛

sk𝑓 ← KeyGen(msk, 𝑓)

𝑚𝑖 ← Decrypt(sk𝑓 , ct𝑖)

ct𝑖 𝑖∈[𝑛], 𝑓



Capturing Dishonest Encrypters

This work: Extend security model to allow adversary to submit multiple 
ciphertexts (rules out adversary’s ability to construct correlated
ciphertexts)

msk

𝑚1, … ,𝑚𝑛

sk𝑓 ← KeyGen(msk, 𝑓)

𝑚𝑖 ← Decrypt(sk𝑓 , ct𝑖)

ct𝑖 𝑖∈[𝑛], 𝑓

Same decryption key 
used for all decryptions 

in real distribution



Capturing Dishonest Encrypters

This work: Extend security model to allow adversary to submit multiple 
ciphertexts (rules out adversary’s ability to construct correlated
ciphertexts)

msk

𝑚1, … ,𝑚𝑛

ct𝑖 𝑖∈[𝑛], 𝑓 ∣ ct𝑖 𝑖∈[𝑛]

sk𝑓 ← KeyGen(msk, 𝑓)

𝑚𝑖 ← Decrypt(sk𝑓 , ct𝑖)

ct𝑖 𝑖∈[𝑛], 𝑓

𝑥𝑖 𝑖∈[𝑛]

𝑓 𝑥𝑖 𝑖∈[𝑛]

Same decryption key 
used for all decryptions 

in real distribution



Capturing Dishonest Encrypters

This work: Extend security model to allow adversary to submit multiple 
ciphertexts (rules out adversary’s ability to construct correlated
ciphertexts)

msk

𝑚1, … ,𝑚𝑛

ct𝑖 𝑖∈[𝑛], 𝑓 ∣ ct𝑖 𝑖∈[𝑛]

sk𝑓 ← KeyGen(msk, 𝑓)

𝑚𝑖 ← Decrypt(sk𝑓 , ct𝑖)

ct𝑖 𝑖∈[𝑛], 𝑓

𝑥𝑖 𝑖∈[𝑛]

𝑓 𝑥𝑖 𝑖∈[𝑛]

Same decryption key 
used for all decryptions 

in real distribution

Ideal evaluation oracle 𝒪𝑓 takes 

vector of inputs 𝑥𝑖 and for each 
input, outputs random draw 

from 𝑓(𝑥𝑖)



Capturing Dishonest Encrypters

This work: Extend security model to allow adversary to submit multiple 
ciphertexts (rules out adversary’s ability to construct correlated
ciphertexts)

msk

𝑚1, … ,𝑚𝑛

ct𝑖 𝑖∈[𝑛], 𝑓 ∣ ct𝑖 𝑖∈[𝑛]

sk𝑓 ← KeyGen(msk, 𝑓)

𝑚𝑖 ← Decrypt(sk𝑓 , ct𝑖)

ct𝑖 𝑖∈[𝑛], 𝑓

𝑥𝑖 𝑖∈[𝑛]

𝑓 𝑥𝑖 𝑖∈[𝑛]

Impose admissibility criterion 
to rule out cases where 
adversary submits same 

ciphertext twice



Our Generic Transformation



Starting Point: Derandomization

𝑥

𝑓 𝑥; PRF 𝑘, 𝑥

𝑘

Starting point: construct “derandomized
function” where randomness for 𝑓

derived from outputs of a PRF

Randomized 
functionality

Derandomized 
functionality

𝑥

𝑓(𝑥 ; 𝑟)

𝑟



Starting Point: Derandomization

𝑥

𝑓 𝑥; PRF 𝑘, 𝑥

𝑘

Randomized 
functionality

Derandomized 
functionality

𝑥

𝑓(𝑥 ; 𝑟)

𝑟

Randomized function 𝑓
Derandomized function 𝑔𝑘:

𝑔𝑘 𝑥 = 𝑓 𝑥, PRF 𝑘, 𝑥



Starting Point: Derandomization

𝑥

𝑓 𝑥; PRF 𝑘, 𝑥

𝑘

Randomized 
functionality

Derandomized 
functionality

𝑥

𝑓(𝑥 ; 𝑟)

𝑟

Randomized function 𝑓
Derandomized function 𝑔𝑘:

𝑔𝑘 𝑥 = 𝑓 𝑥, PRF 𝑘, 𝑥

PRF key embedded 
inside 𝑔𝑘



Starting Point: Derandomization

sk𝑔𝑘

rFE. KeyGen(msk, 𝑓)

FE. KeyGen(msk, 𝑔𝑘)

But in public-
key setting, keys 
do not hide the 

function!𝑘←
R
𝒦

𝑔𝑘 𝑥 = 𝑓 𝑥, PRF 𝑘, 𝑥



Starting Point: Derandomization

sk𝑔𝑘

rFE. KeyGen(msk, 𝑓)

FE. KeyGen(msk, 𝑔𝑘)

Given sk𝑔𝑘, adversary can 

learn the PRF key 𝑘
𝑘←

R
𝒦

𝑔𝑘 𝑥 = 𝑓 𝑥, PRF 𝑘, 𝑥



How to Hide the Key?

Key idea: functional encryption provides message-hiding, so 
place part of the key in the ciphertext

PRF key 𝑘

𝑘1 𝑘2
Key share in 
ciphertext

Secret-share the 
PRF key

Key share in 
function key



How to Hide the Key?

Key idea: functional encryption provides message-hiding, so 
place part of the key in the ciphertext

rFE. Encrypt(mpk,𝑚)

FE. Encrypt mpk, 𝑚, 𝑘1

𝑘1←
R
𝒦

(𝑚, 𝑘1)



How to Hide the Key?

Key idea: functional encryption provides message-hiding, so 
place part of the key in the ciphertext

rFE. KeyGen(msk, 𝑓)

FE. KeyGen msk, 𝑔𝑘2

𝑘2←
R
𝒦

sk𝑔𝑘2

𝑔𝑘2 𝑚, 𝑘1 = 𝑓(𝑚 ; PRF(𝑘1 ⋄ 𝑘2, 𝑚)

Some operation to 
combine shares of key



How to Hide the Key?

Key idea: functional encryption provides message-hiding, so 
place part of the key in the ciphertext

rFE. KeyGen(msk, 𝑓)

FE. KeyGen msk, 𝑔𝑘2

𝑘2←
R
𝒦

sk𝑔𝑘2

𝑔𝑘2 𝑚, 𝑘1 = 𝑓(𝑚 ; PRF(𝑘1 ⋄ 𝑘2, 𝑚)

Security now relies on 
related-key security 

for PRFs



Why Related-Key Security?

Challenge ciphertext:

(𝑚, 𝑘1)

Chosen by 
adversary

Chosen by 
challenger

Secret key queries:

sk𝑔𝑘2
sk𝑔

𝑘2
′

Adversary sees

𝑓 𝑚 ; PRF 𝑘1 ⋄ 𝑘2, 𝑚

and

𝑓(𝑚 ; PRF 𝑘1 ⋄ 𝑘2
′ , 𝑚 )

Adversary knows 
𝑚, 𝑘2 and 𝑘2

′ and 
outputs still look 

random!



Security Against Dishonest Encrypters

Encrypter has a lot of flexibility in constructing ciphertexts:

rFE. Encrypt(mpk,𝑚)

FE. Encrypt mpk, 𝑚, 𝑘1

𝑘1←
R
𝒦

(𝑚, 𝑘1)

Encrypter can 
choose the key-

share

Encrypter can choose the randomness

Cannot influence 
output distribution 
due to RKA-security

Potentially problematic



Security Against Dishonest Encrypters

Encrypter has a lot of flexibility in constructing ciphertexts:

FE. Encrypt mpk, 𝑚, 𝑘1

(𝑚, 𝑘1) (𝑚, 𝑘1)

Two distinct FE ciphertexts encrypting the same message

Run encryption 
algorithm twice with 
different randomness



Security Against Dishonest Encrypters

Encrypter has a lot of flexibility in constructing ciphertexts:

(𝑚, 𝑘1)

(𝑚, 𝑘1)

Decryption in real world: always 
produces same output

Decryption in ideal world: always 
produces independent outputs

Encrypter has too much freedom in constructing ciphertexts



Applying Deterministic Encryption

Key observation: honestly generated ciphertexts have high 
entropy

(𝑚, 𝑘1)

Derive encryption 
randomness from 𝑘1 and 

include a NIZK argument that 
ciphertext is well-formed

Should be random PRF 
key – high entropy!



Putting the Pieces Together

rFE. Encrypt(mpk,𝑚)

FE. Encrypt mpk, 𝑚, 𝑘1 ; ℎ(𝑘1)

𝑘1←
R
𝒦

𝜋

NIZK argument of 
knowledge of (𝑚, 𝑘1)

that explains ciphertext

Randomness for FE encryption derived from 
deterministic function on 𝑘1 (e.g., a PRG)



Putting the Pieces Together

rFE. Encrypt(mpk,𝑚)

FE. Encrypt mpk, 𝑚, 𝑘1 ; ℎ(𝑘1)

𝑘1←
R
𝒦

𝜋

Ciphertext is a deterministic function 
of 𝑚, 𝑘1 so for any distinct pairs 
(𝑚, 𝑘1), (𝑚

′, 𝑘1
′ ), outputs of PRF 

uniform and independently 
distributed by RKA-security



Our Transformation in a Nutshell

Simulation-
secure FE

DDH + RSA

NIZK 
arguments

RKA-
secure PRF

deterministic 
encryption

Simulation-
secure rFE

Security properties of 
underlying FE scheme is 
preserved (e.g., adaptive 

security)



The State of (Public-Key) Functional Encryption

PKE
Bounded-

Collusion FE

Multilinear 
Maps / iO

General-
Purpose FE

Generally adaptively 
secure

iO
General-

Purpose rFE

Selectively secure

Deterministic functionalities Randomized functionalities
[SS10, GVW12, …]

[GGHRSW13, GGHZ16, … ]

[GJKS15]



The State of (Public-Key) Functional Encryption

PKE
Bounded-

Collusion FE

Multilinear 
Maps / iO

General-
Purpose FE

[SS10, GVW12, …]

[GGHRSW13, GGHZ16, … ]

Bounded-
Collusion rFE

General-
Purpose rFE

Number-theoretic 
assumptions

Adaptively secure 
against malicious 

encrypters!

This work



Open Questions

• More direct / efficient constructions of rFE for 
simpler classes of functionalities (e.g., sampling from 
a database)?

• Generic construction of rFE from FE without making 
additional assumptions?

• Connections between rFE and other primitives (e.g., 
various flavors of obfuscation)?



Questions?

http://eprint.iacr.org/2016/482


