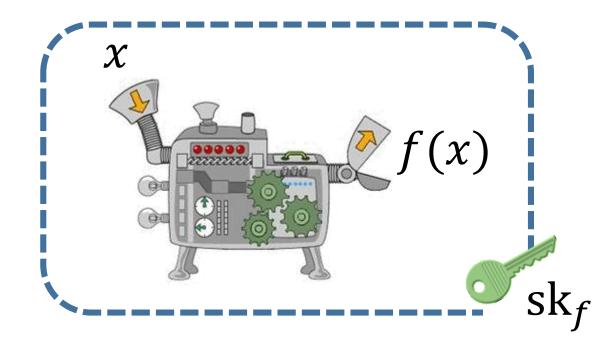
Functional Encryption: Deterministic to Randomized Functions from Simple Assumptions

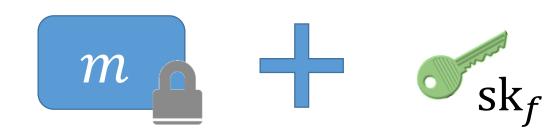
Shashank Agrawal and David J. Wu



Keys are associated with $\underline{deterministic}$ functions f

 $Decrypt(sk_f, ct_m)$

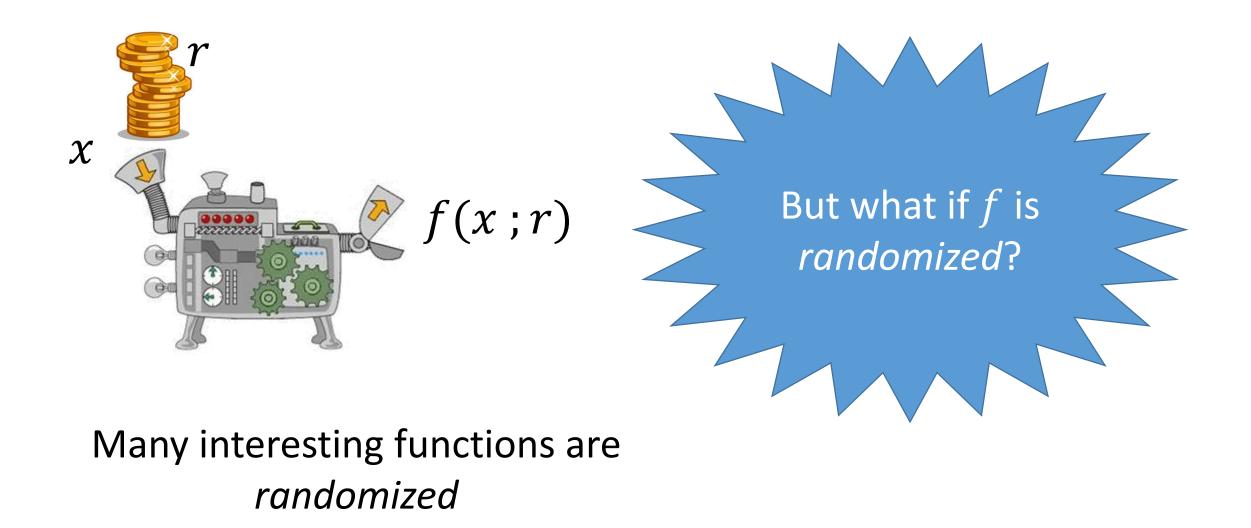
f(m)



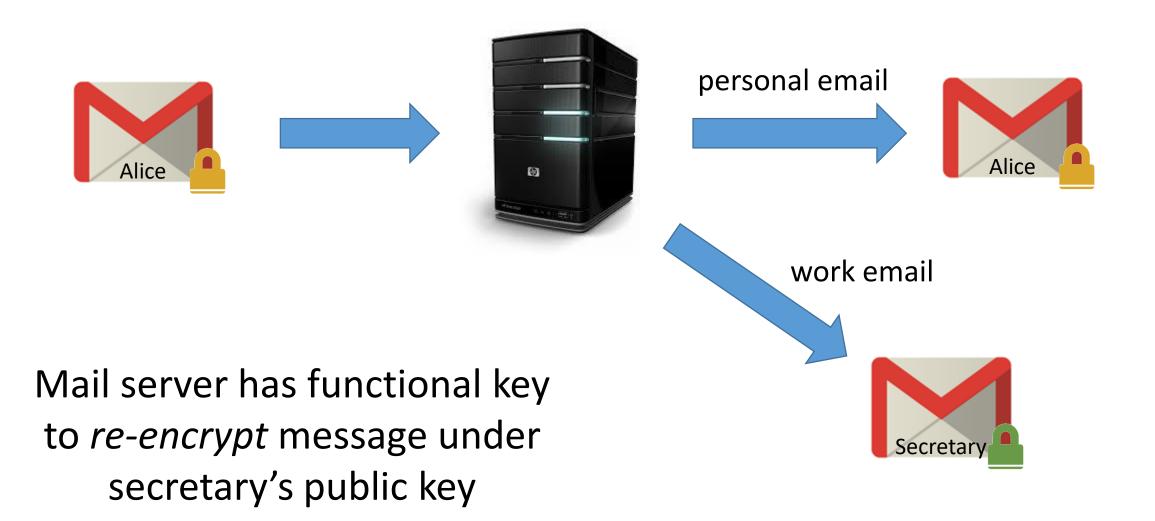
- Setup (1^{λ}) : Outputs (msk, mpk)
- KeyGen(msk, *f*): Outputs decryption key sk_{*f*}
- Encrypt(mpk, m): Outputs ciphertext ct_m
- Decrypt(sk_f , ct_m): Outputs f(m)

- Setup (1^{λ}) : Outputs (msk, mpk)
- KeyGen(msk, f): Outputs decryption key sk_f
- Encrypt(mpk • Decrypt(sk_f, Deterministic function f

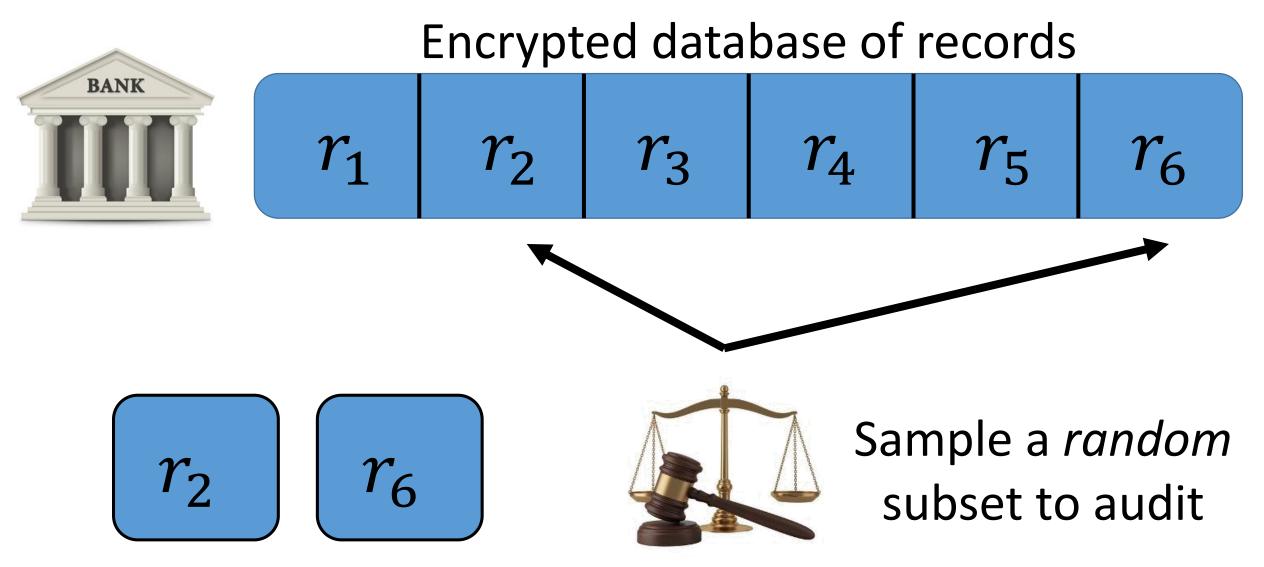
Functional Encryption for Randomized Functionalities (rFE) [GJKS15]



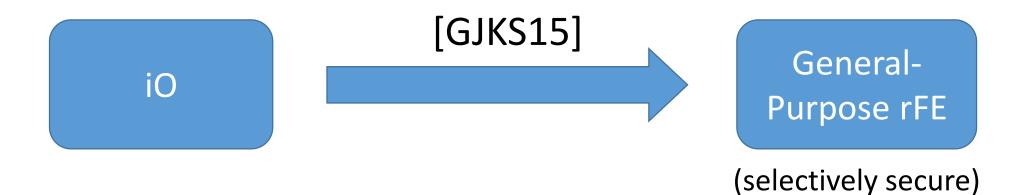
Application 1: Proxy Re-Encryption



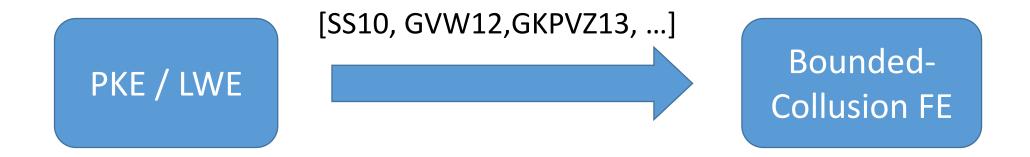
Application 2: Auditing an Encrypted Database

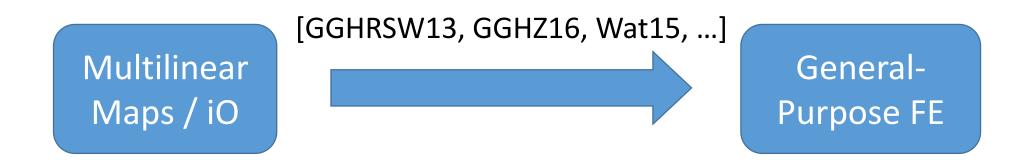


Does Public-Key rFE Exist?

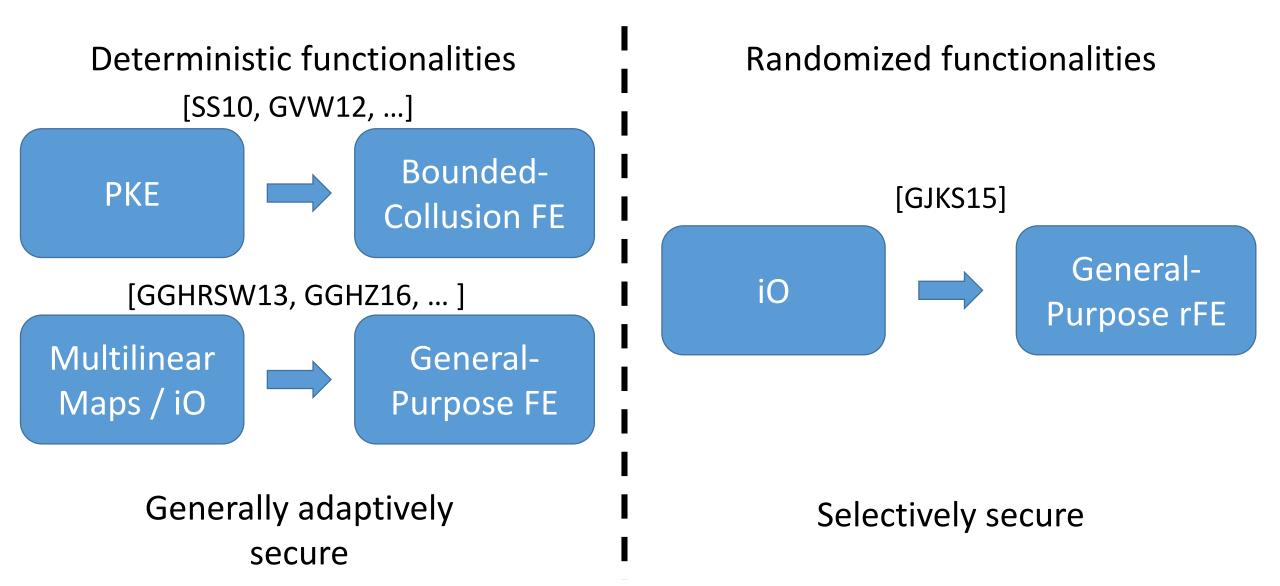


Can be instantiated from a wide range of assumptions





The State of (Public-Key) Functional Encryption



The State of (Public-Key) Functional Encryption

Does extending FE to support randomized functionalities require much stronger tools?

Our Main Result

General-purpose FE for deterministic functionalities

Number Theory

(e.g., DDH, RSA)

General-purpose FE for randomized functionalities

Implication: randomized FE is not much more difficult to construct than standard FE.

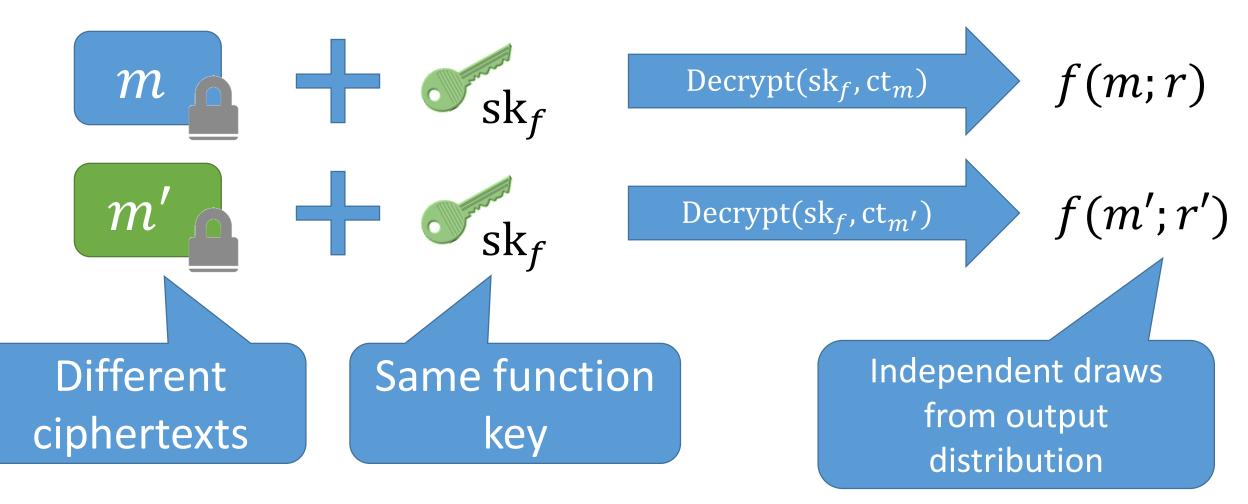
Defining rFE

Defining Correctness for FE

Deterministic functionalities

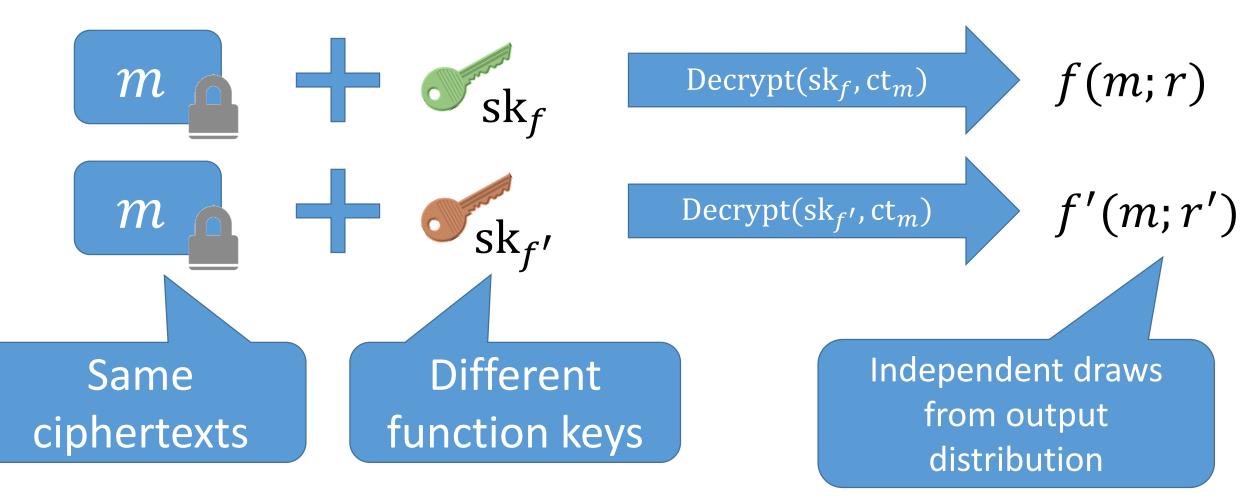
Defining Correctness for rFE [GJKS15]

Randomized functionalities

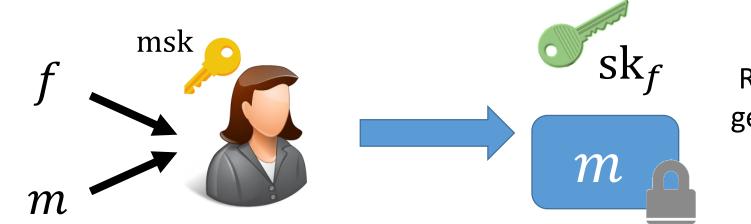


Defining Correctness for rFE [GJKS15]

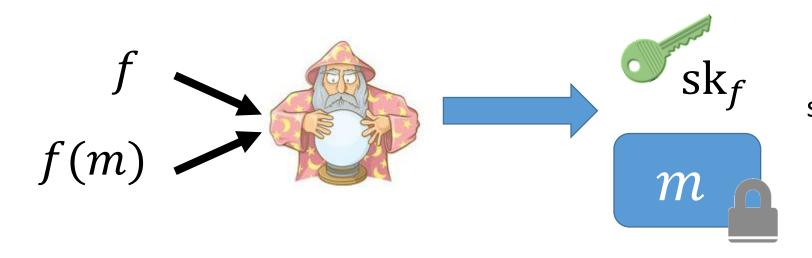
Randomized functionalities



Simulation-Based Security (Informally)

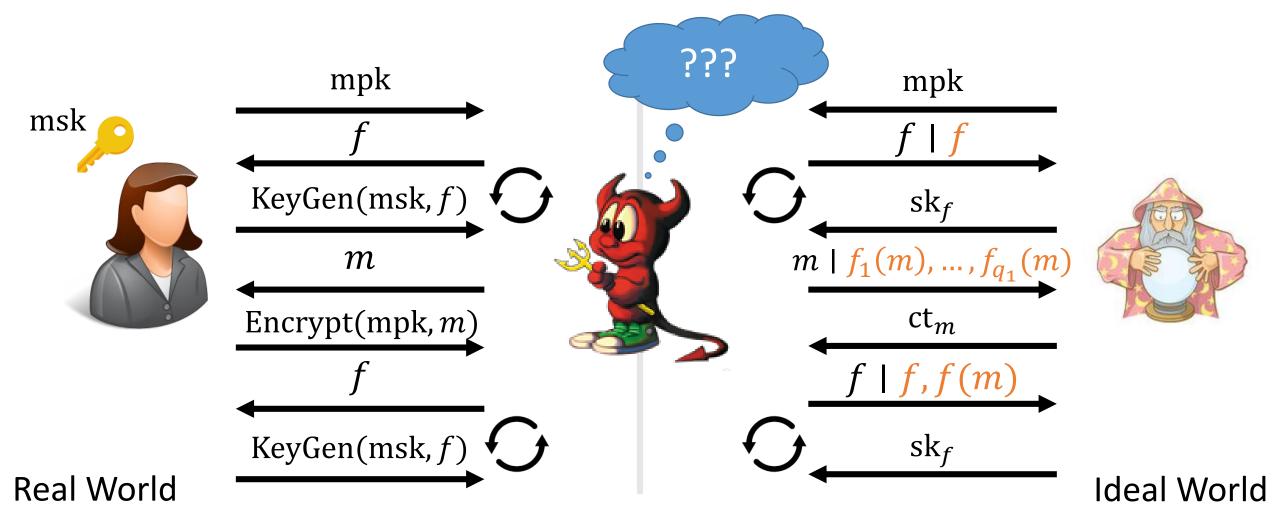


Real World: honestly generated ciphertexts and secret keys

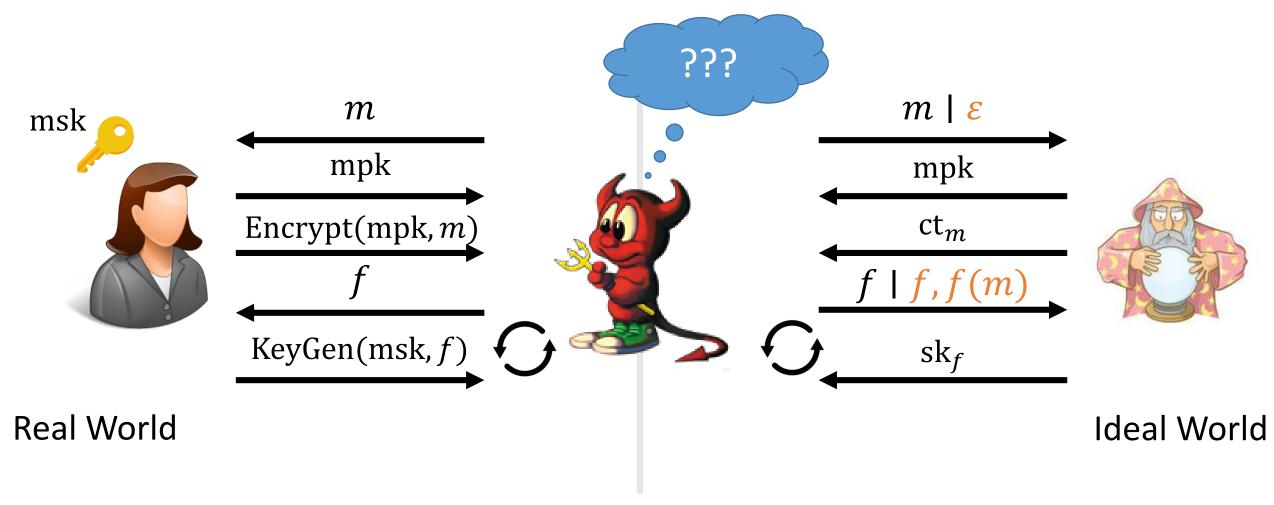


Ideal World: simulated ciphertexts and secret keys

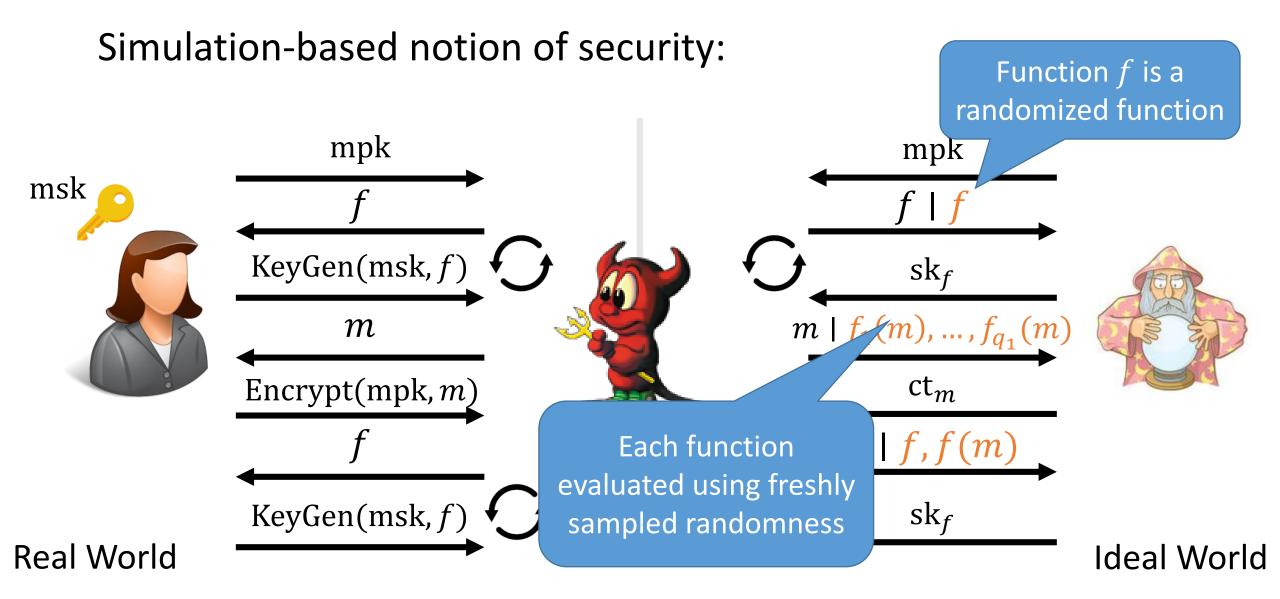
Simulation-based notion of security:



Selective security: adversary first commits to challenge

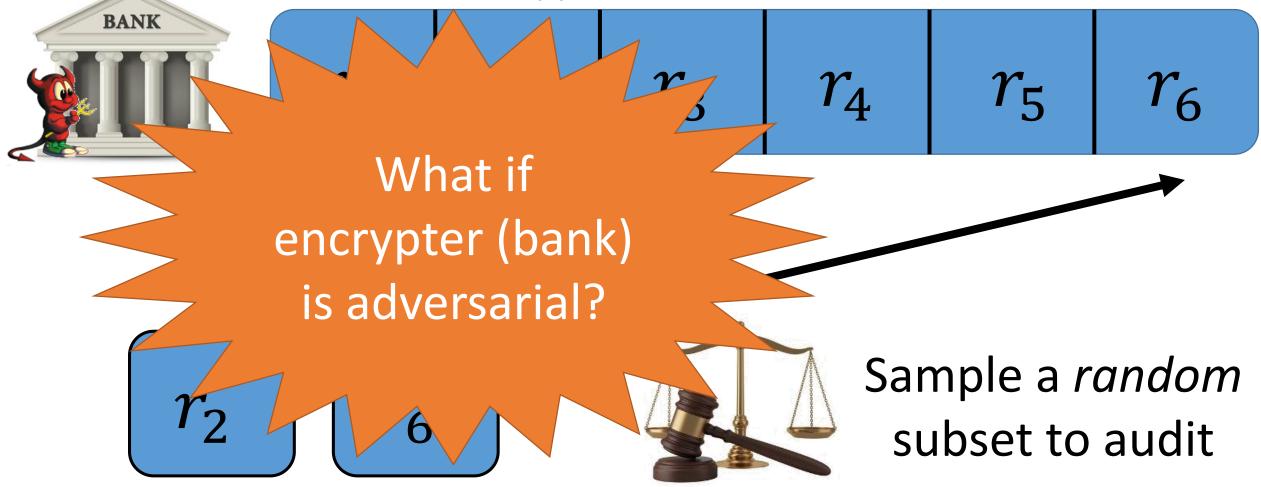


Security for rFE



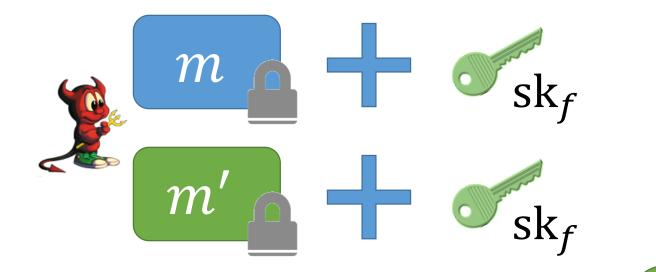
The Case for Malicious Encrypters

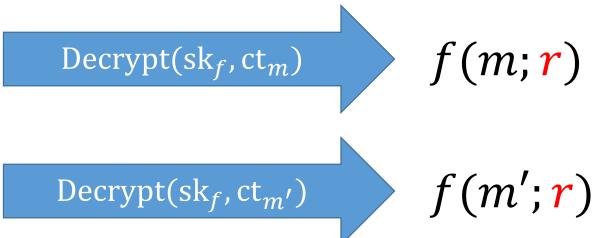
Encrypted database of records



The Case for Malicious Encrypters

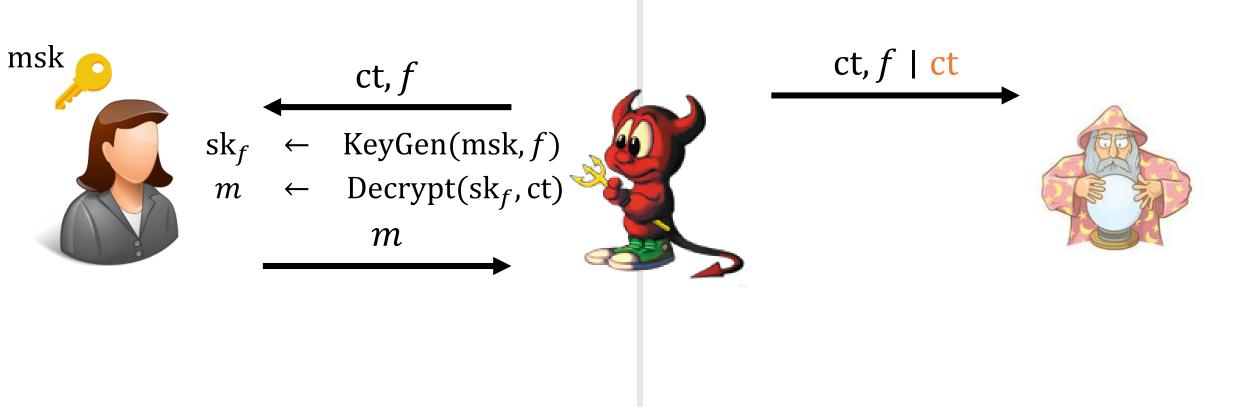
Randomized functionalities

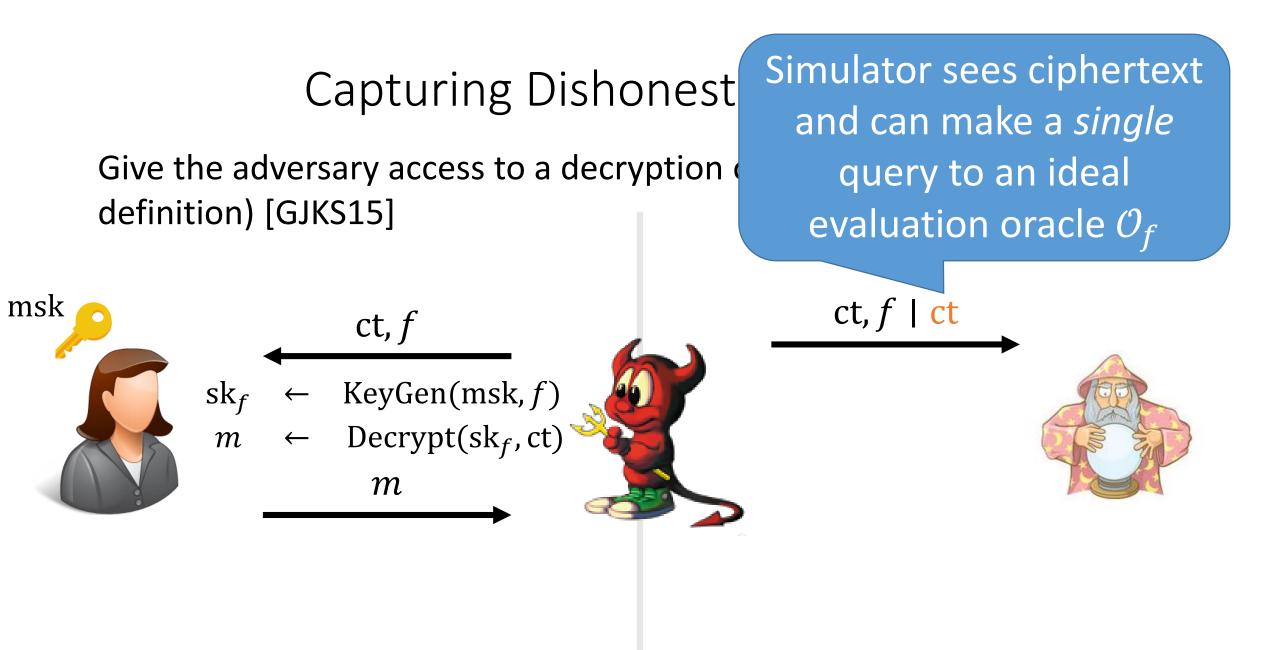


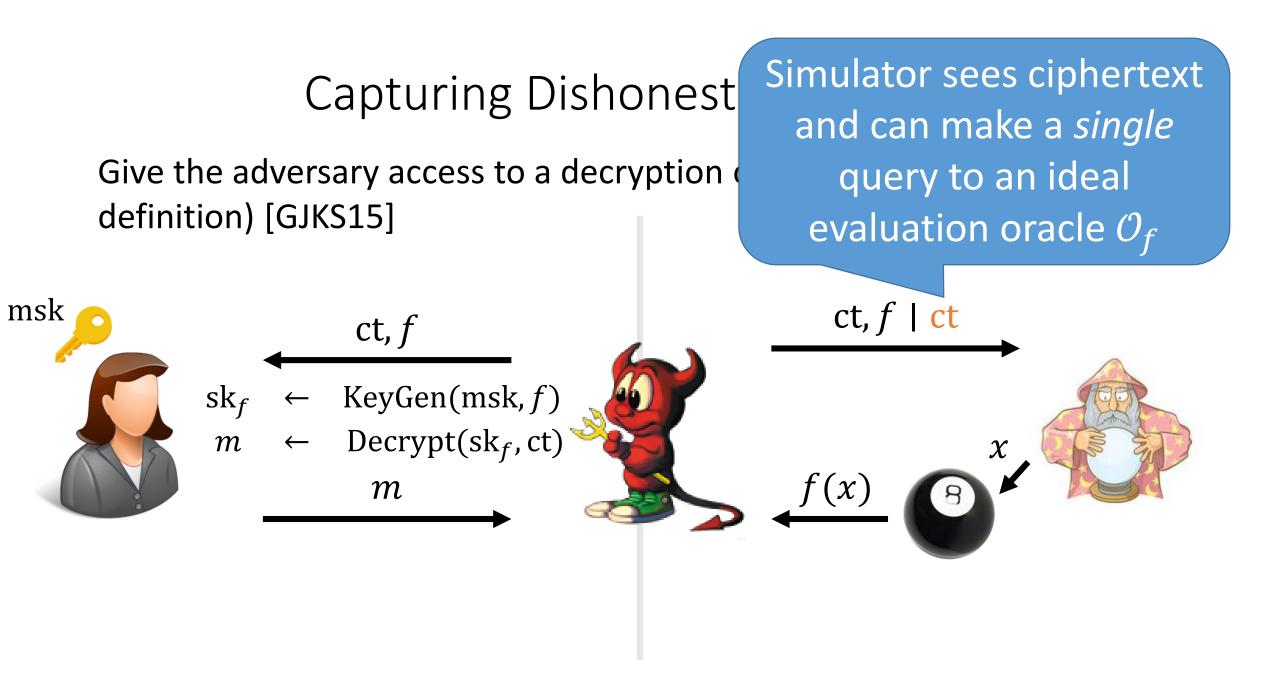


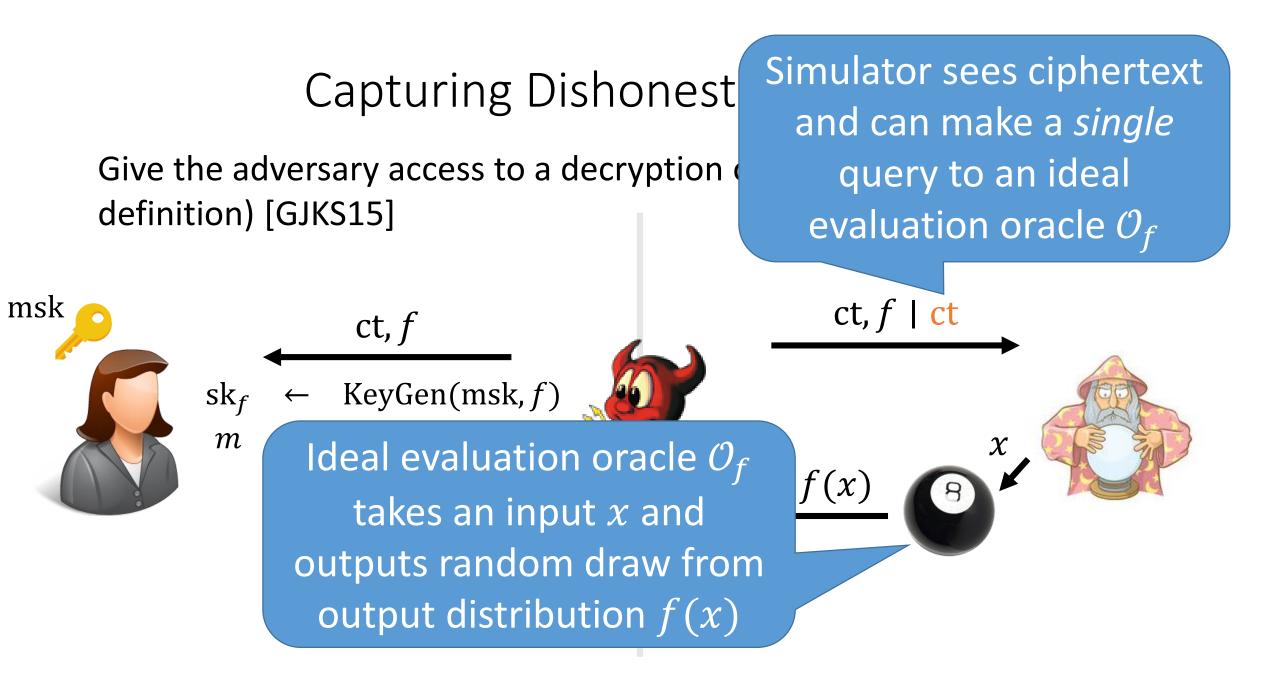
Dishonest encrypters can construct "bad" ciphertexts such that decryption produces *correlated* outputs

Give the adversary access to a decryption oracle (a "CCA" like definition) [GJKS15]

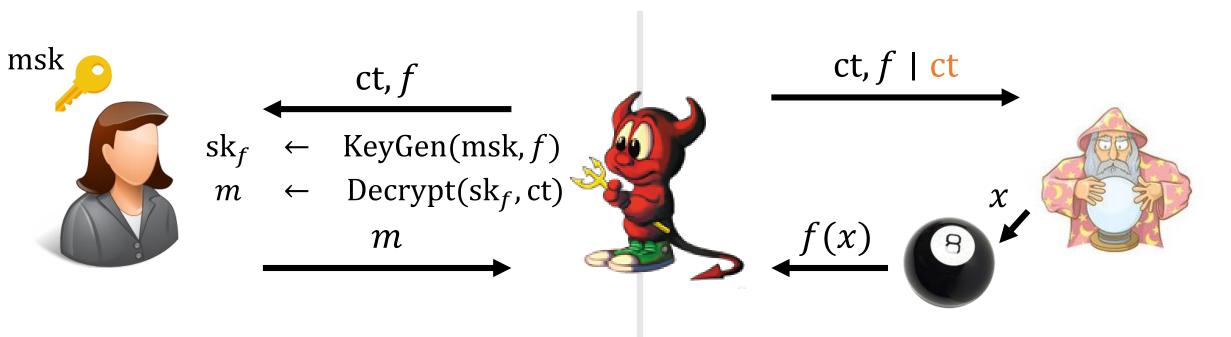






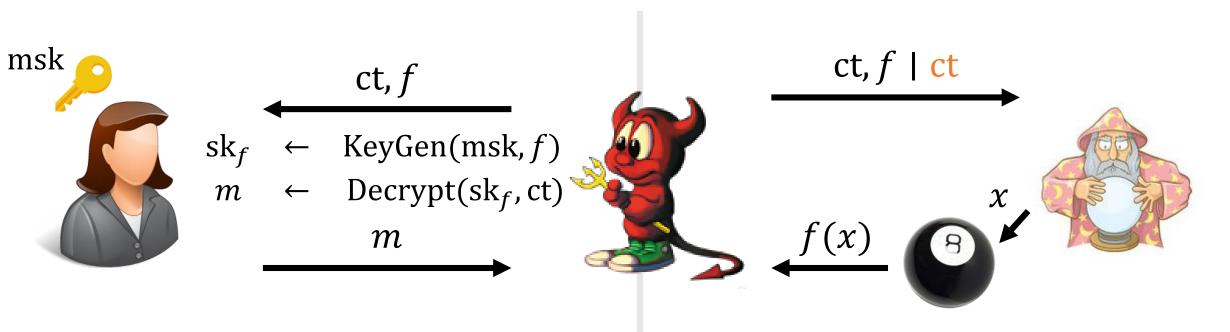


Give the adversary access to a decryption oracle (a "CCA" like definition) [GJKS15]



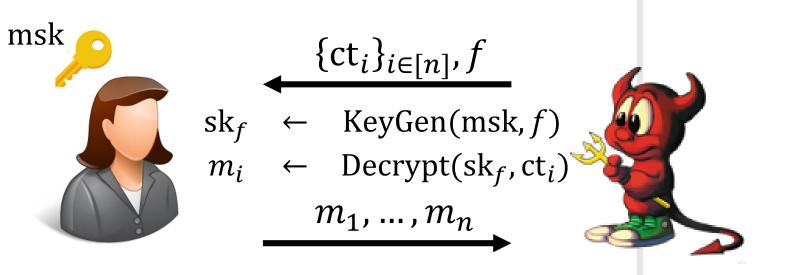
Note: in ideal world, distinguisher *always* sees a function evaluation using uniform randomness

Give the adversary access to a decryption oracle (a "CCA" like definition) [GJKS15]

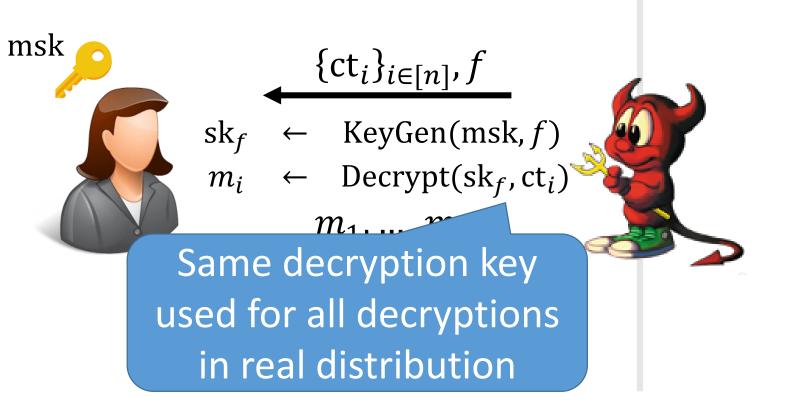


Notion also well-defined in deterministic setting and is easily achieved by attaching a NIZK to ciphertext

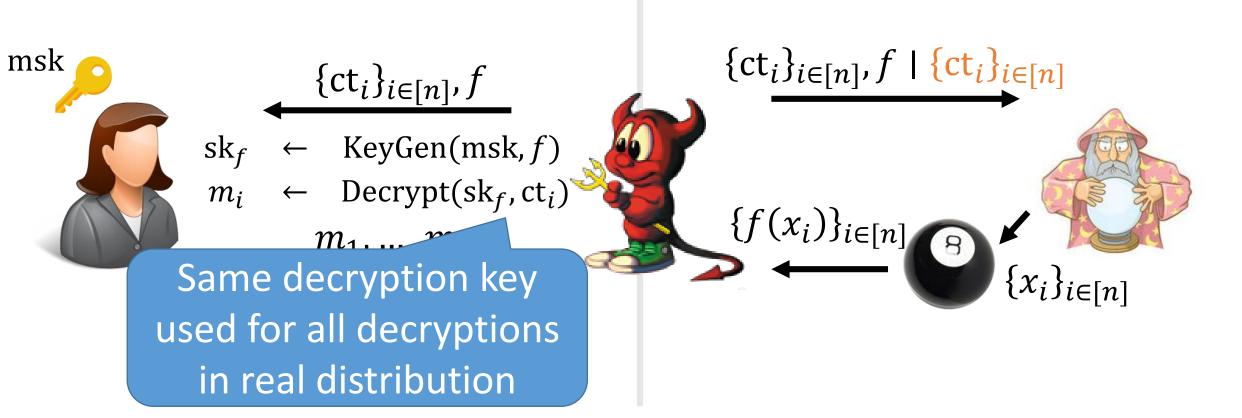
<u>This work</u>: Extend security model to allow adversary to submit *multiple* ciphertexts (rules out adversary's ability to construct *correlated* ciphertexts)



<u>**This work</u>**: Extend security model to allow adversary to submit *multiple* ciphertexts (rules out adversary's ability to construct *correlated* ciphertexts)</u>



<u>**This work</u>**: Extend security model to allow adversary to submit *multiple* ciphertexts (rules out adversary's ability to construct *correlated* ciphertexts)</u>



<u>This work</u>: Extend security model to allow adversary to submit *multiple* ciphertexts (rules out adversary's at ciphertexts) Ideal evaluation oracle \mathcal{O}_f takes

msk 🦰

 $sk_f \leftarrow KeyGen(msk, f)$ $m_i \leftarrow Decrypt(sk_f, ct_i)$

 $\{\operatorname{ct}_i\}_{i\in[n]}, f$

Same decryption key used for all decryptions in real distribution

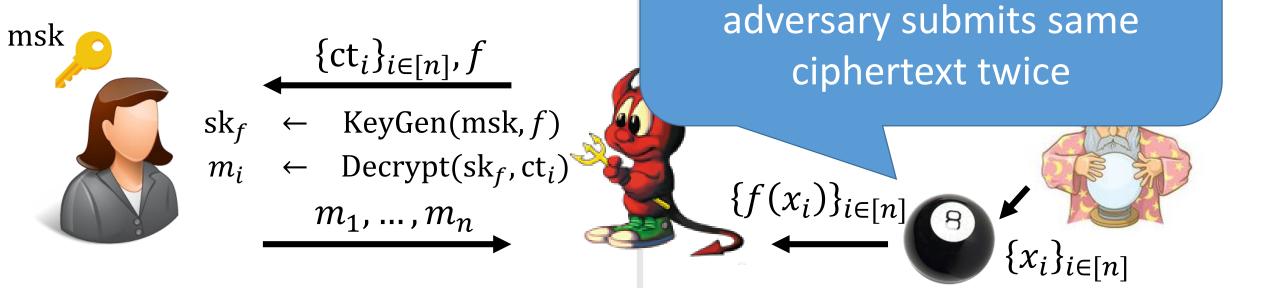
 m_{\cdot}

Ideal evaluation oracle \mathcal{O}_f takes vector of inputs x_i and for each input, outputs random draw from $f(x_i)$

 $\{x_i\}_{i\in[n]}$

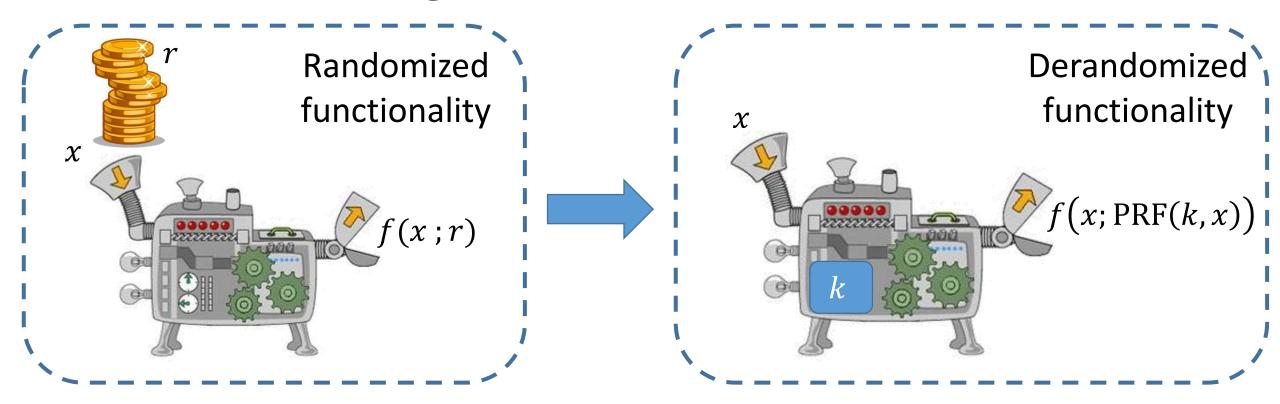
 ${f(x_i)}_{i\in[n]}$

This work: Extend security model to allow advorsary to submit multiple ciphertexts (rules out adversary's ab ciphertexts) Impose admissibility criterion to rule out cases where



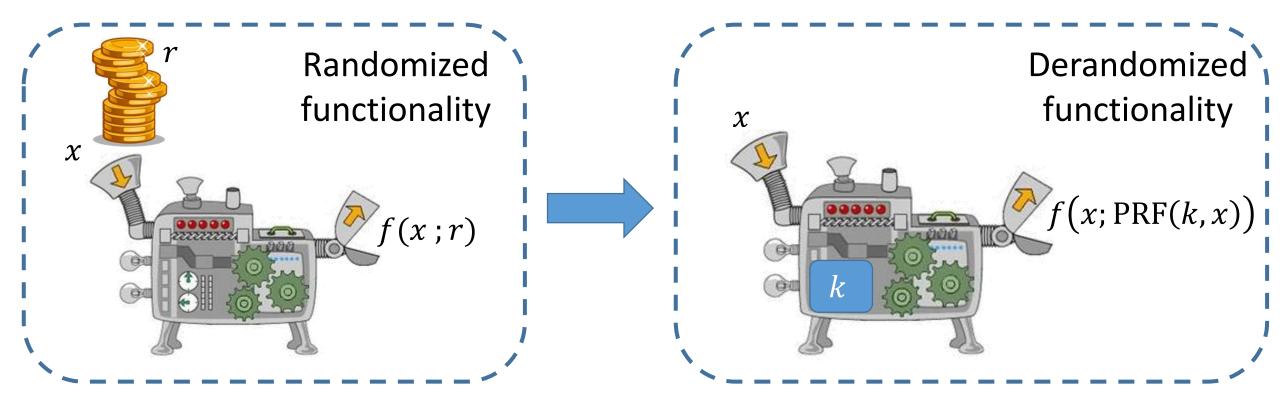
Our Generic Transformation

Starting Point: Derandomization



<u>Starting point</u>: construct "derandomized function" where randomness for *f* derived from outputs of a PRF

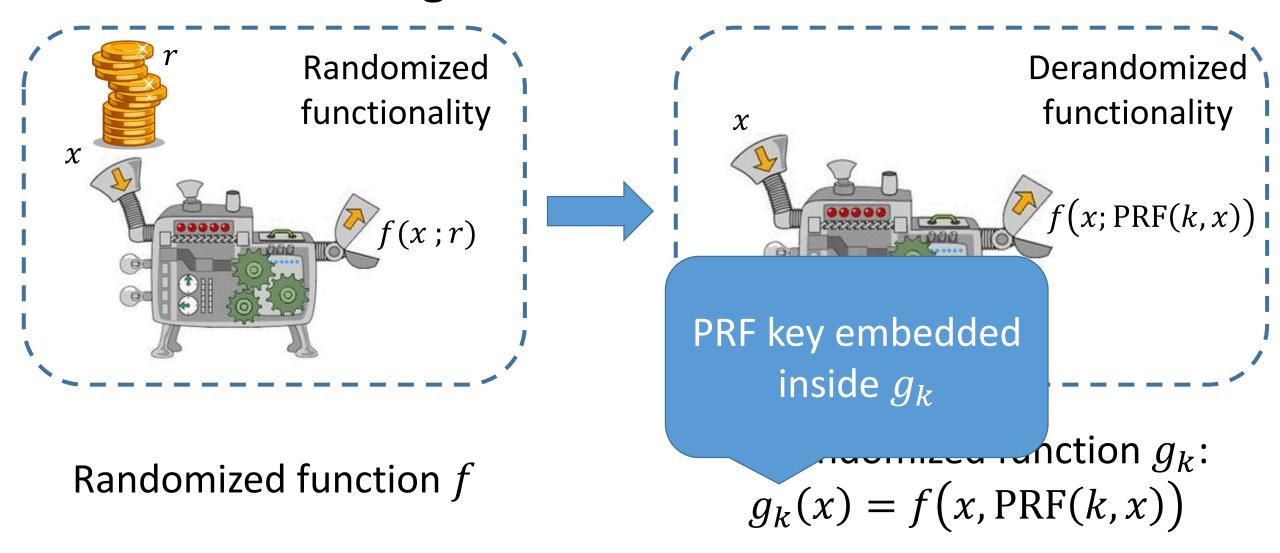
Starting Point: Derandomization



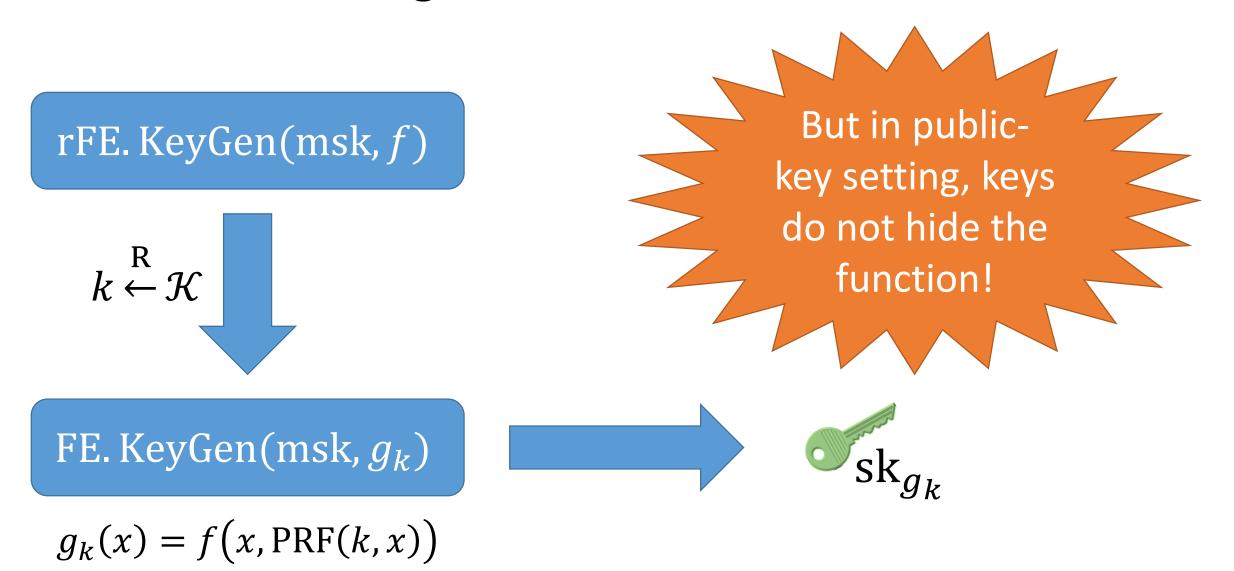
Randomized function f

Derandomized function g_k : $g_k(x) = f(x, PRF(k, x))$

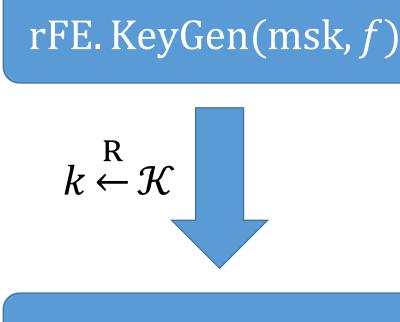
Starting Point: Derandomization



Starting Point: Derandomization



Starting Point: Derandomization

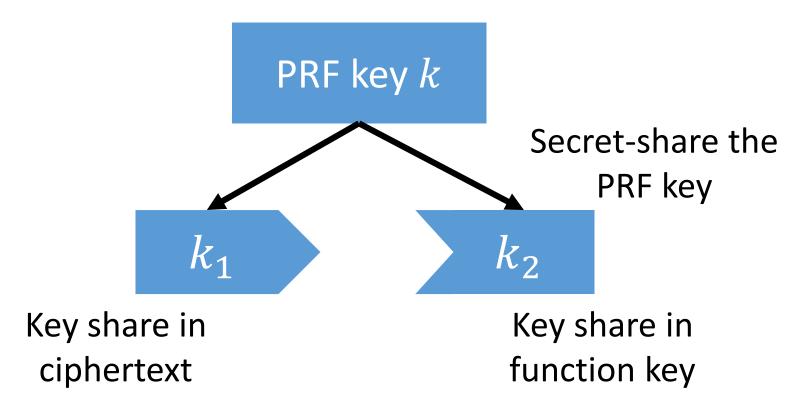


Given sk_{g_k} , adversary can learn the PRF key k

FE. KeyGen(msk, g_k)

 $g_k(x) = f(x, \operatorname{PRF}(k, x))$

<u>Key idea:</u> functional encryption provides message-hiding, so place part of the key in the <u>ciphertext</u>



<u>Key idea:</u> functional encryption provides message-hiding, so place part of the key in the <u>ciphertext</u>

rFE. Encrypt(mpk, m)

$$k_1 \stackrel{\mathsf{R}}{\leftarrow} \mathcal{K}$$

FE. Encrypt(mpk, (m, k_1))

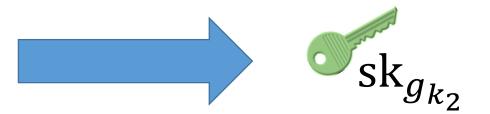
<u>Key idea:</u> functional encryption provides message-hiding, so place part of the key in the <u>ciphertext</u>

rFE. KeyGen(msk, *f*)

$$k_2 \stackrel{\mathrm{R}}{\leftarrow} \mathcal{K}$$

Some operation to combine shares of key

 $g_{k_2}(m, k_1) = f(m; \text{PRF}(k_1 \diamond k_2, m))$



<u>Key idea:</u> functional encryption provides message-hiding, so place part of the key in the <u>ciphertext</u>

rFE. KeyGen(msk, *f*)

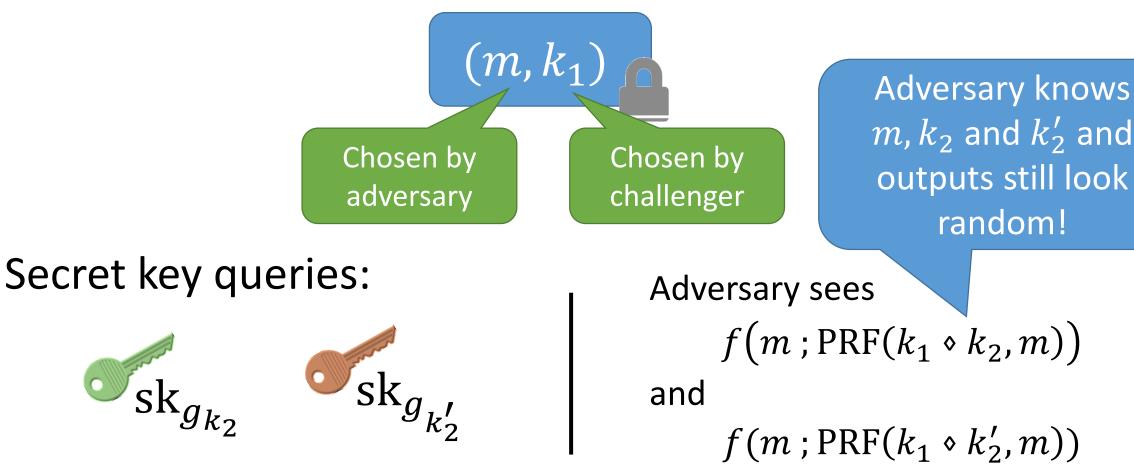
$$k_2 \stackrel{\mathrm{R}}{\leftarrow} \mathcal{K}$$

Security now relies on <u>related-key security</u> for PRFs

 $g_{k_2}(m, k_1) = f(m; \text{PRF}(k_1 \circ k_2, m))$

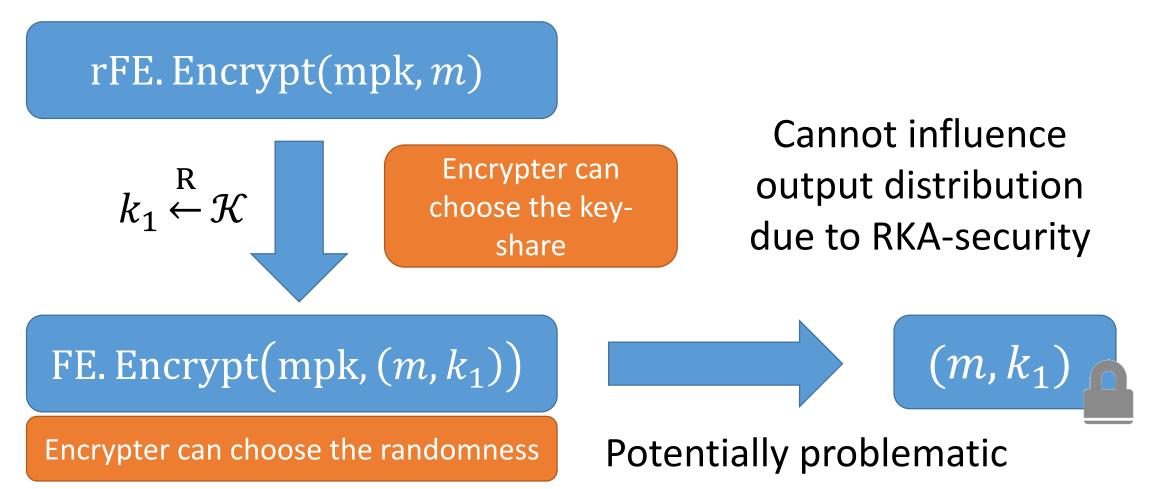
Why Related-Key Security?

Challenge ciphertext:



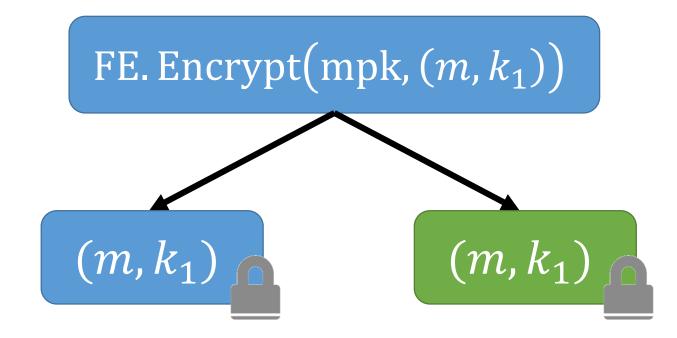
Security Against Dishonest Encrypters

Encrypter has a lot of flexibility in constructing ciphertexts:



Security Against Dishonest Encrypters

Encrypter has a lot of flexibility in constructing ciphertexts:

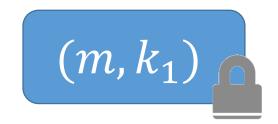


Run encryption algorithm twice with different randomness

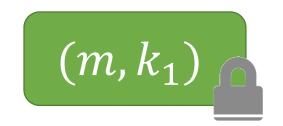
Two *distinct* FE ciphertexts encrypting the *same* message

Security Against Dishonest Encrypters

Encrypter has a lot of flexibility in constructing ciphertexts:



Decryption in real world: always produces *same* output

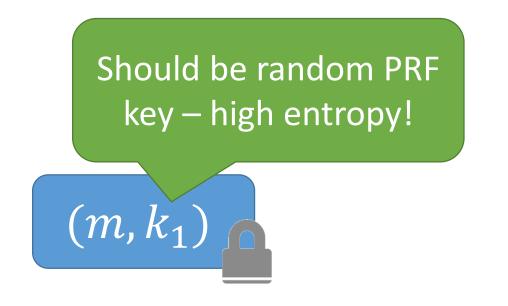


Decryption in ideal world: always produces independent outputs

Encrypter has too much freedom in constructing ciphertexts

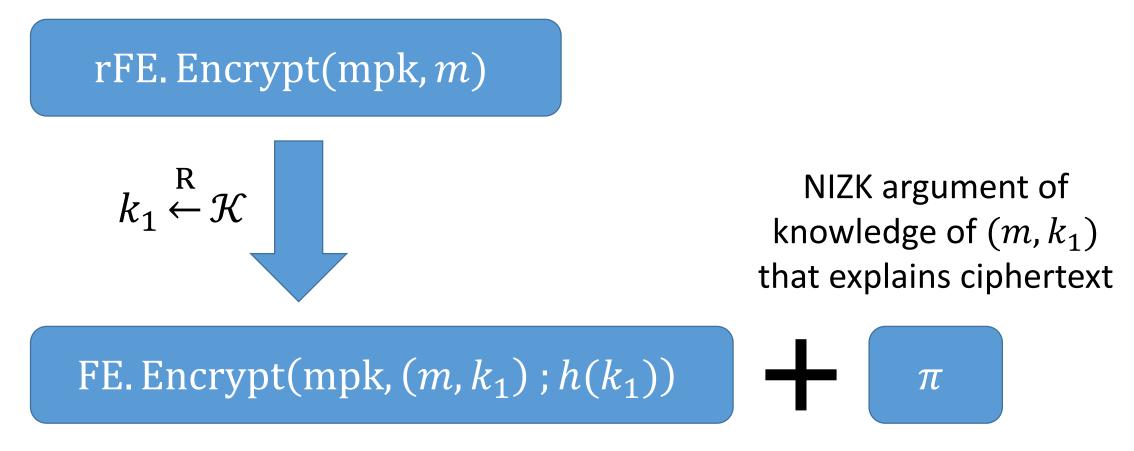
Applying Deterministic Encryption

Key observation: honestly generated ciphertexts have high entropy



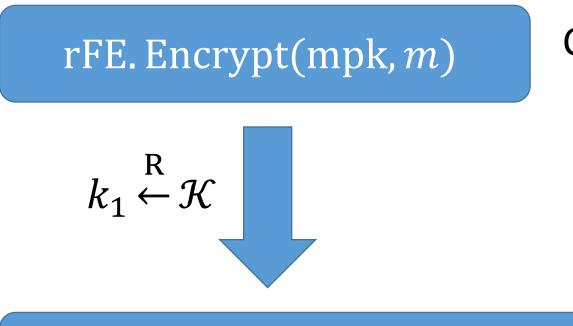
Derive encryption randomness from k_1 and include a NIZK argument that ciphertext is well-formed

Putting the Pieces Together



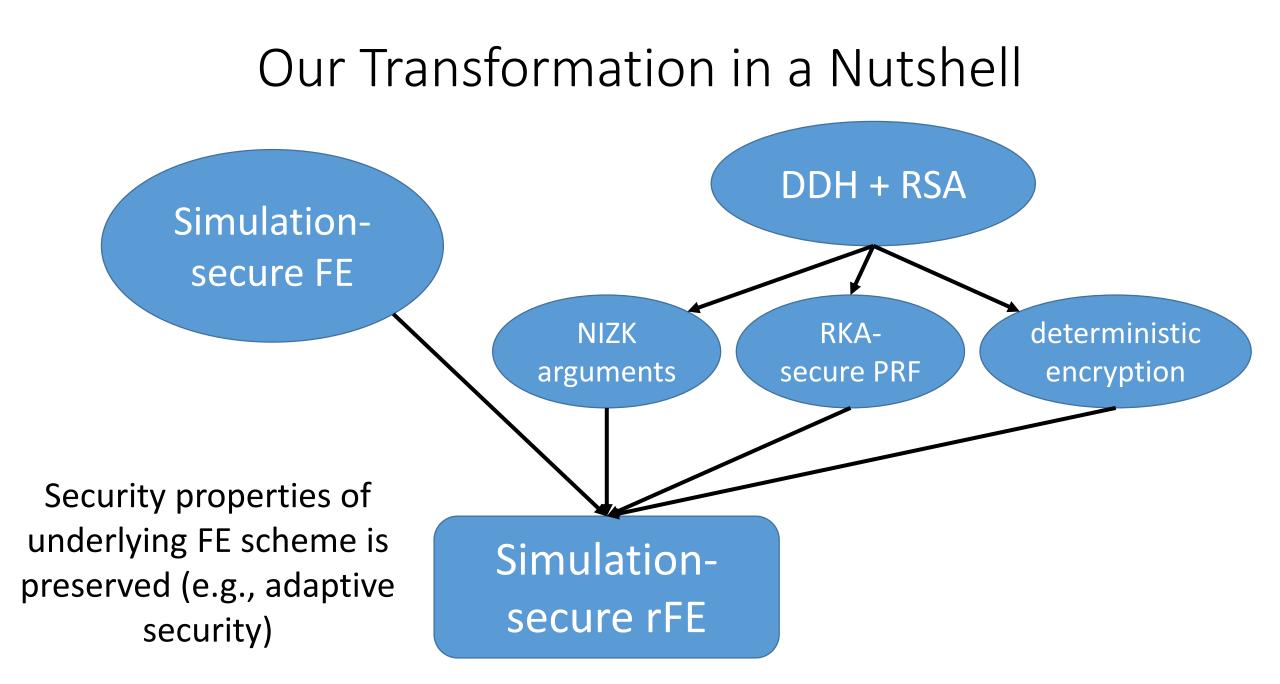
Randomness for FE encryption derived from deterministic function on k_1 (e.g., a PRG)

Putting the Pieces Together

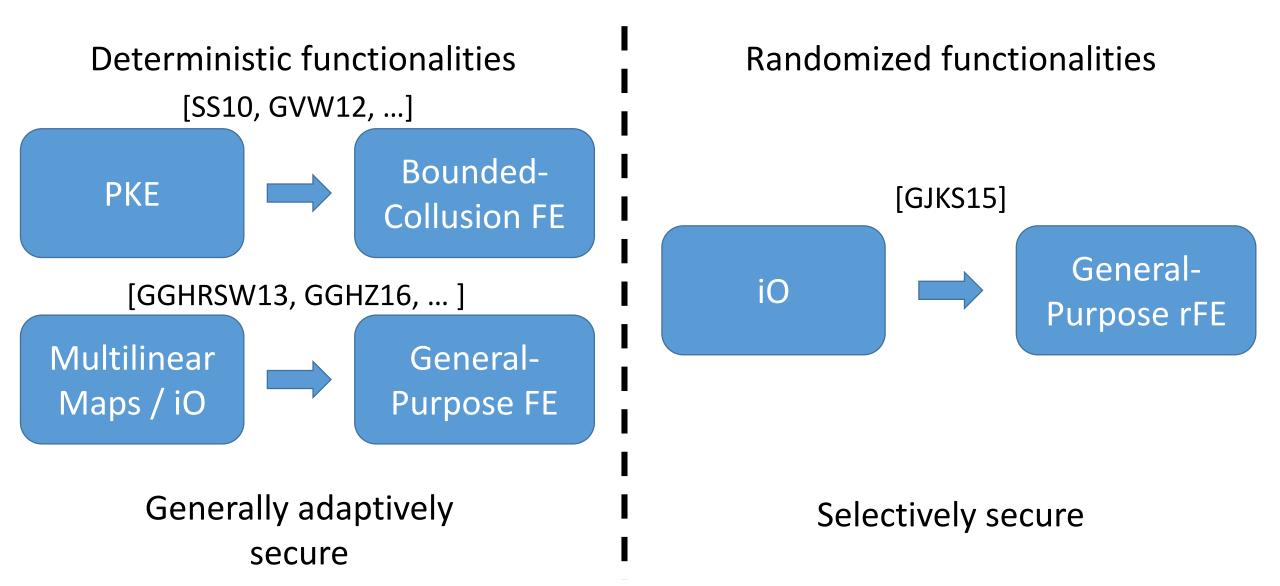


Ciphertext is a deterministic function of (m, k_1) so for *any* distinct pairs $(m, k_1), (m', k'_1),$ outputs of PRF uniform and independently distributed by RKA-security

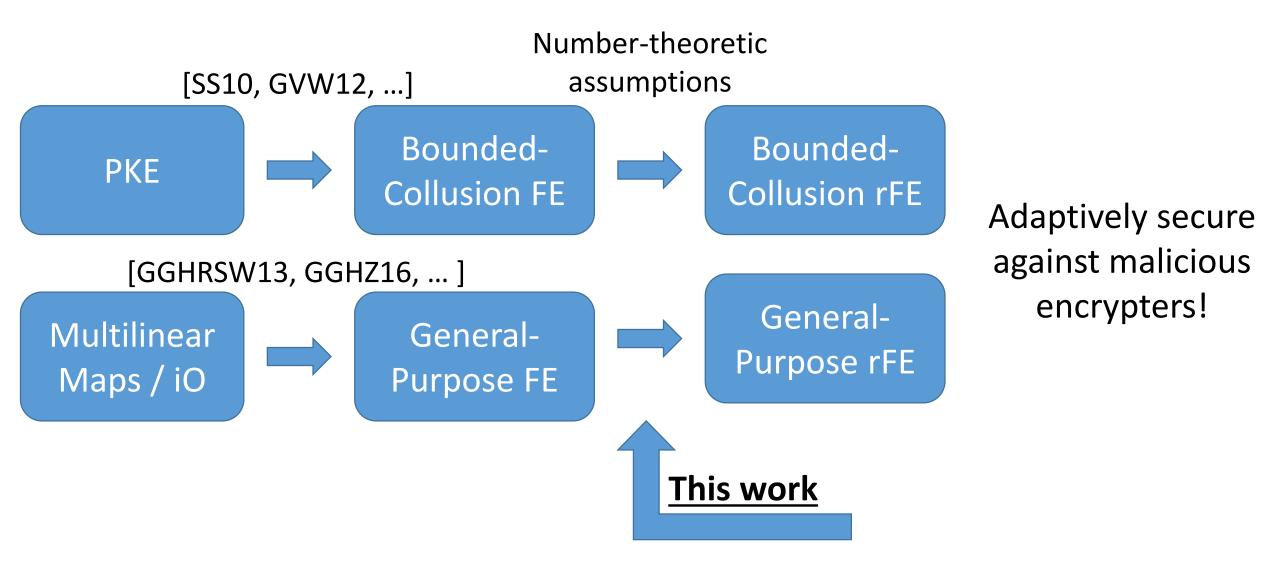
FE. Encrypt(mpk,
$$(m, k_1)$$
; $h(k_1)$) π



The State of (Public-Key) Functional Encryption



The State of (Public-Key) Functional Encryption



Open Questions

- More direct / efficient constructions of rFE for simpler classes of functionalities (e.g., sampling from a database)?
- Generic construction of rFE from FE without making additional assumptions?
- Connections between rFE and other primitives (e.g., various flavors of obfuscation)?

