
How to Use (Plain) Witness Encryption:
Flexible Broadcast, Registered ABE, and More

Cody Freitag, Brent Waters, and David Wu

May 2023



Broadcast Encryption

sk1 sk2 sk4 sk5 sk6sk3

[FN93]

message 𝑚

𝑆 = 1,3,6

Ciphertext specifies a 
set of users



Broadcast Encryption

sk1 sk6sk3

[FN93]

message 𝑚

𝑆 = 1,3,6

Ciphertext specifies a 
set of users

Functionality: Users in the set can decrypt



Broadcast Encryption

sk1 sk6sk3

[FN93]

message 𝑚

𝑆 = 1,3,6

Ciphertext specifies a 
set of users

Functionality: Users in the set can decrypt

Security: Users outside the set 
learn nothing about message 
(even if they collude)

Efficiency: ct = 𝑚 + poly 𝜆, log 𝑆



Broadcast Encryption

sk1 sk6sk3

[FN93]

message 𝑚

𝑆 = 1,3,6

Ciphertext specifies a 
set of users

Where do the 
secret keys 
come from?

Functionality: Users in the set can decrypt

Security: Users outside the set 
learn nothing about message 
(even if they collude)

Efficiency: ct = 𝑚 + poly 𝜆, log 𝑆

Note: decryption requires 
knowledge of the set 𝑆



Broadcast Encryption

sk1 sk2 sk4 sk5 sk6sk3

[FN93]

master secret key

Central trusted
authority generates keys

What if the key issuer is 
compromised?

Built-in key escrow

Central point of failure



Flexible Broadcast Encryption

public-key directory

sk1

pk1

Users generate public/private 
keys independently (as in 

public-key encryption)

Broadcast encryption without a central authority



Flexible Broadcast Encryption

public-key directory

pk1

sk2

pk2

Users generate public/private 
keys independently (as in 

public-key encryption)

Broadcast encryption without a central authority



Flexible Broadcast Encryption

Broadcast encryption without a central authority

public-key directory

pk1

pk2

pk3

pk4

pk5

Encrypt pp, pk𝑖 𝑖∈𝑆, 𝑚 → ct

Decrypt pp, pk𝑖 𝑖∈𝑆, sk, ct → 𝑚

public 
parameters

Can encrypt a message 𝑚 to any set of public keys

Efficiency: ct = 𝑚 + poly 𝜆, log 𝑆

Any secret key associated with broadcast set can decrypt

Decryption does requires knowledge of public keys in 
broadcast set



Flexible Broadcast Encryption

Broadcast encryption without a central authority

public-key directory

pk1

pk2

pk3

pk4

pk5

Security: Users outside the set learn nothing about 
message (even if they collude)

Encrypt pp, pk𝑖 𝑖∈𝑆, 𝑚 → ct

Decrypt pp, pk𝑖 𝑖∈𝑆, sk, ct → 𝑚

Generalizes notion of distributed broadcast encryption 
from [BZ14]

Distributed broadcast encryption: keys are generated 
for a particular index, can encrypt to a set of keys 
occupying different indices



More Broadly: Trustless Cryptography

Recently: removing trust from functional encryption

Functional encryption [BSW11,O’N10]: augment public-key encryption with 
fine-grained decryption capabilities

Limitation: secret keys are issued by a central trusted authority

identity-based encryption → registration-based encryption

attribute-based encryption → registered attribute-based encryption

broadcast encryption → distributed/flexible broadcast encryption

functional encryption → registered functional encryption

[GHMR18, GHMRS19, GV20]

[HLWW23]

[BZ14]

[FFMMRV23, DP23]



More Broadly: Trustless Cryptography

Recently: removing trust from functional encryption

Functional encryption [BSW11,O’N10]: augment public-key encryption with 
fine-grained decryption capabilities

Limitation: secret keys are issued by a central trusted authority

identity-based encryption → registration-based encryption

attribute-based encryption → registered attribute-based encryption

broadcast encryption → distributed/flexible broadcast encryption

functional encryption → registered functional encryption

[GHMR18, GHMRS19, GV20]

[HLWW23]

[BZ14]

[FFMMRV23, DP23]

Removing trust for functionalities beyond identity-based 
encryption often requires stronger cryptographic machinery

Registered attribute-based encryption:
• Pairing-based construction [HLWW23]: bounded number of users, large CRS, Boolean formula policies
• Indistinguishability obfuscation [HLWW23]: unbounded users, transparent setup, arbitrary policies



More Broadly: Trustless Cryptography

Recently: removing trust from functional encryption

Functional encryption [BSW11,O’N10]: augment public-key encryption with 
fine-grained decryption capabilities

Limitation: secret keys are issued by a central trusted authority

identity-based encryption → registration-based encryption

attribute-based encryption → registered attribute-based encryption

broadcast encryption → distributed/flexible broadcast encryption

functional encryption → registered functional encryption

[GHMR18, GHMRS19, GV20]

[HLWW23]

[BZ14]

[FFMMRV23, DP23]

Removing trust for functionalities beyond identity-based 
encryption often requires stronger cryptographic machinery

Distributed broadcast and registered functional encryption only 
known from indistinguishability obfuscation (iO)



This Work

Can we build trustless encryption schemes from weaker 
tools than indistinguishability obfuscation?

Our focus: plain witness encryption

• Witness encryption seemingly easier to realize than indistinguishability obfuscation 
[BJKPW18, CVW18, Tsa22, VWW22]

• Does not imply iO in a black-box manner [GMM18]

Witness encryption commonly regarded as “obfustopia” primitive and yet 
seems much weaker than iO

This work: new tools for realizing obfustopia primitives from plain witness 
encryption



Our Results

Can we build trustless encryption schemes from weaker 
tools than indistinguishability obfuscation?

Using witness encryption (and LWE), we obtain:
Flexible broadcast encryption
• Previously: distributed broadcast encryption from iO [BZ14]

Registered ABE for general policies and unbounded number of users
• Previously: only known from iO [HLWW23]

Optimal broadcast encryption (centralized)
• Previously: broadcast encryption not previously known from plain witness

encryption (but known from iO, evasive LWE, or pairings + lattices)

New technique: function-binding hash functions



Witness Encryption
[GGSW13]

Encrypt 𝑥,𝑚 → ct

Decrypt 𝑤, ct → 𝑚

Defined with respect to an NP relation ℛ
(and associated NP language ℒ)

Encrypts a message 𝑚 with respect to a statement 𝑥

Decrypts a ciphertext given knowledge of an associated NP witness 𝑤

Functionality: if ℛ 𝑥,𝑤 = 1, decryption recovers the message 𝑚

Security: if 𝑥 ∉ ℒ, then ct hides message



Building Flexible Broadcast Encryption

Consider an approach using indistinguishability obfuscation:

Public parameters: pk for a (vanilla) public-key 
encryption scheme

User public key: encryption of 1 with randomness 𝑟:
𝑐 ← Encrypt pk, 1 ; 𝑟

User secret key: randomness 𝑟

public-key directory

pk1

pk2

pk3

pk4

pk5



Building Flexible Broadcast Encryption

Consider an approach using indistinguishability obfuscation:

public-key directory

𝑐1

𝑐2

𝑐4

𝑐5

Encrypt to 𝑆 = 𝑐1, 𝑐2, 𝑐4, 𝑐5

Step 1: Construct Merkle tree on 𝑆

𝑐1 𝑐2 𝑐4 𝑐5

ℎ12 ℎ45

ℎ



Building Flexible Broadcast Encryption

Consider an approach using indistinguishability obfuscation:

public-key directory

𝑐1

𝑐2

𝑐4

𝑐5

Encrypt to 𝑆 = 𝑐1, 𝑐2, 𝑐4, 𝑐5

Step 2: Obfuscate the following program

On input 𝑖, 𝑐𝑖 , 𝜋𝑖 , 𝑟𝑖 :

• Membership in 𝑺: Check that 𝜋𝑖 is a Merkle inclusion 
proof for key 𝑐𝑖 at position 𝑖 with respect to the hash ℎ

• Knowledge of secret key: Check that 𝑟𝑖 is the secret key:
𝑐𝑖 = Encrypt pk, 1; 𝑟𝑖

If both checks pass, output 𝑚. Otherwise, output ⊥.

Hard-coded: public parameter pk, hash 𝑆, message 𝑚



Proof Strategy

Encrypt to 𝑆 = 𝑐1, 𝑐2, 𝑐4, 𝑐5

Step 1: Replace 𝑐𝑖 ← Encrypt pk, 0

Indistinguishable by semantic security of public-key encryption scheme

On input 𝑖, 𝑐𝑖 , 𝜋𝑖 , 𝑟𝑖 :
• Membership in 𝑺: Check that 𝜋𝑖 is valid 

for 𝑐𝑖 at position 𝑖 with respect to ℎ
• Knowledge of secret key: Check that 
𝑟𝑖 = Encrypt pk, 1; 𝑟𝑖

Output 𝑚 if checks pass and ⊥ otherwise.



Proof Strategy

Encrypt to 𝑆 = 𝑐1, 𝑐2, 𝑐4, 𝑐5

Step 1: Replace 𝑐𝑖 ← Encrypt pk, 0

Indistinguishable by semantic security of public-key encryption scheme

On input 𝑖, 𝑐𝑖 , 𝜋𝑖 , 𝑟𝑖 :
• Membership in 𝑺: Check that 𝜋𝑖 is valid 

for 𝑐𝑖 at position 𝑖 with respect to ℎ
• Knowledge of secret key: Check that 
𝑟𝑖 = Encrypt pk, 1; 𝑟𝑖

Output 𝑚 if checks pass and ⊥ otherwise.

This condition is
unsatisfiable for 𝑐𝑖 ∈ 𝑆

Problem: But could still exist valid 
openings for 𝑐𝑖

′ ∉ 𝑆



Proof Strategy

Step 2: Use a somewhere statistically-binding (SSB) hash function to compute ℎ
and statistically bind at index 𝑖 = 1

Ensures that the only 
opening at index 𝑖 = 1 to 
ℎ is 𝑐1 = Encrypt pk, 0

Implication: On all inputs where 𝑖 = 1, program will output ⊥

Encrypt to 𝑆 = 𝑐1, 𝑐2, 𝑐4, 𝑐5

On input 𝑖, 𝑐𝑖 , 𝜋𝑖 , 𝑟𝑖 :
• Membership in 𝑺: Check that 𝜋𝑖 is valid 

for 𝑐𝑖 at position 𝑖 with respect to ℎ
• Knowledge of secret key: Check that 
𝑟𝑖 = Encrypt pk, 1; 𝑟𝑖

Output 𝑚 if checks pass and ⊥ otherwise.



Proof Strategy

Step 2: Use a somewhere statistically-binding (SSB) hash function to compute ℎ
and statistically bind at index 𝑖 = 1

Implication: On all inputs where 𝑖 = 1, program will output ⊥

Encrypt to 𝑆 = 𝑐1, 𝑐2, 𝑐4, 𝑐5

On input 𝑖, 𝑐𝑖 , 𝜋𝑖 , 𝑟𝑖 :
• Membership in 𝑺: Check that 𝜋𝑖 is valid 

for 𝑐𝑖 at position 𝑖 with respect to ℎ
• Knowledge of secret key: Check that 
𝑟𝑖 = Encrypt pk, 1; 𝑟𝑖

Output 𝑚 if checks pass and ⊥ otherwise.

On input 𝑖, 𝑐𝑖 , 𝜋𝑖 , 𝑟𝑖 :
• Index threshold: 𝑖 > 1
• Membership in 𝑺: Check that 𝜋𝑖 is valid 

for 𝑐𝑖 at position 𝑖 with respect to ℎ
• Knowledge of secret key: Check that 
𝑟𝑖 = Encrypt pk, 1; 𝑟𝑖

Output 𝑚 if checks pass ⊥ otherwise.

≈

Identical functionality so 
indistinguishable under iO



Proof Strategy

Step 3: Use a somewhere statistically-binding (SSB) hash function to compute ℎ
and statistically bind at index 𝑖 = 2

Implication: On all inputs where 𝑖 = 2, program will output ⊥

Encrypt to 𝑆 = 𝑐1, 𝑐2, 𝑐4, 𝑐5

On input 𝑖, 𝑐𝑖 , 𝜋𝑖 , 𝑟𝑖 :
• Index threshold: 𝑖 > 1
• Membership in 𝑺: Check that 𝜋𝑖 is valid 

for 𝑐𝑖 at position 𝑖 with respect to ℎ
• Knowledge of secret key: Check that 
𝑟𝑖 = Encrypt pk, 1; 𝑟𝑖

Output 𝑚 if checks pass ⊥ otherwise.

On input 𝑖, 𝑐𝑖 , 𝜋𝑖 , 𝑟𝑖 :
• Index threshold: 𝑖 > 2
• Membership in 𝑺: Check that 𝜋𝑖 is valid 

for 𝑐𝑖 at position 𝑖 with respect to ℎ
• Knowledge of secret key: Check that 
𝑟𝑖 = Encrypt pk, 1; 𝑟𝑖

Output 𝑚 if checks pass ⊥ otherwise.

≈

Identical functionality so 
indistinguishable under iO



Proof Strategy

Encrypt to 𝑆 = 𝑐1, 𝑐2, 𝑐4, 𝑐5

On input 𝑖, 𝑐𝑖 , 𝜋𝑖 , 𝑟𝑖 :
• Index threshold: 𝑖 > 4
• Membership in 𝑺: Check that 𝜋𝑖 is valid 

for 𝑐𝑖 at position 𝑖 with respect to ℎ
• Knowledge of secret key: Check that 
𝑟𝑖 = Encrypt pk, 1; 𝑟𝑖

Output 𝑚 if checks pass ⊥ otherwise.

Repeat process for each public-key in 𝑆

Final program requires that input threshold 𝑖 > 𝑆 , which is never satisfied

On input 𝑖, 𝑐𝑖 , 𝜋𝑖 , 𝑟𝑖 :

Output ⊥.≈

Identical functionality so 
indistinguishable under iO

Ciphertext indistinguishable from program that outputs ⊥ on all inputs



Replacing iO with Witness Encryption

Encrypt to 𝑆 = 𝑐1, 𝑐2, 𝑐4, 𝑐5

On input 𝑖, 𝑐𝑖 , 𝜋𝑖 , 𝑟𝑖 :
• Membership in 𝑺: Check that 𝜋𝑖 is valid 

for 𝑐𝑖 at position 𝑖 with respect to ℎ
• Knowledge of secret key: Check that 
𝑟𝑖 = Encrypt pk, 1; 𝑟𝑖

Output 𝑚 if checks pass and ⊥ otherwise.

This program is
checking an NP relation!

Statement: pk, ℎ
Witness: 𝑖, 𝑐𝑖 , 𝜋𝑖 , 𝑟𝑖

What happens if we replace iO
with witness encryption?

Challenge: need to argue that there 
are no witnesses for (pk, ℎ)

Can replace all 𝑐𝑖 ∈ 𝑆 with encryptions 
of 0, but there can still be openings to ℎ

that are encryptions of 1 (since ℎ is 
computationally binding)



Replacing iO with Witness Encryption

Encrypt to 𝑆 = 𝑐1, 𝑐2, 𝑐4, 𝑐5

On input 𝑖, 𝑐𝑖 , 𝜋𝑖 , 𝑟𝑖 :
• Membership in 𝑺: Check that 𝜋𝑖 is valid 

for 𝑐𝑖 at position 𝑖 with respect to ℎ
• Knowledge of secret key: Check that 
𝑟𝑖 = Encrypt pk, 1; 𝑟𝑖

Output 𝑚 if checks pass and ⊥ otherwise.

What happens if we replace iO
with witness encryption?

Challenge: need to argue that there 
are no witnesses for (pk, ℎ)

Can replace all 𝑐𝑖 ∈ 𝑆 with encryptions 
of 0, but there can still be openings to ℎ

that are encryptions of 1 (since ℎ is 
computationally binding)

With obfuscation: ℎ can statistically 
bind to one index; obfuscated 
program saves progress No analog with plain witness encryption



Replacing iO with Witness Encryption

Encrypt to 𝑆 = 𝑐1, 𝑐2, 𝑐4, 𝑐5

On input 𝑖, 𝑐𝑖 , 𝜋𝑖 , 𝑟𝑖 :
• Membership in 𝑺: Check that 𝜋𝑖 is valid 

for 𝑐𝑖 at position 𝑖 with respect to ℎ
• Knowledge of secret key: Check that 
𝑟𝑖 = Encrypt pk, 1; 𝑟𝑖

Output 𝑚 if checks pass and ⊥ otherwise.

What happens if we replace iO
with witness encryption?

Challenge: need to argue that there 
are no witnesses for (pk, ℎ)

Can replace all 𝑐𝑖 ∈ 𝑆 with encryptions 
of 0, but there can still be openings to ℎ

that are encryptions of 1 (since ℎ is 
computationally binding)

With obfuscation: ℎ can statistically 
bind to one index; obfuscated 
program saves progress No analog with plain witness encryption

Statistically binding to all indices 
results in long ciphertext

(linear in 𝑆 )



Function-Binding Hash Functions

𝑐1 𝑐2 𝑐3 𝑐4

ℎ12 ℎ34

ℎ
Somewhere statistically binding:
can only open hash of (𝑐1, … , 𝑐𝑛)
to value 𝑐𝑖 at a particular index 𝑖

if hash key is binding at 𝑖 = 2, then 𝑐2 is only 
possible opening for ℎ at index 2



Function-Binding Hash Functions

𝑐1 𝑐2 𝑐3 𝑐4

ℎ12 ℎ34

ℎ

Our approach: hash function ℎ statistically binds to a function of the input

Function-binding: can only open 
hash of 𝑐1, … , 𝑐𝑛 to a value 𝑐𝑖 if 
there exists some input 𝑐1

′ , … , 𝑐𝑛
′

where 𝑐𝑖
′ = 𝑐𝑖 such that

𝑓(𝑐1, … , 𝑐𝑛) = 𝑓(𝑐1
′ , … , 𝑐𝑛

′ )

Hash key associated with the specific function 𝑓

only possible openings are to inputs 𝑐2 where there exists 
𝑐1
′ , 𝑐3

′ , 𝑐4
′ where 𝑓 𝑐1

′ , 𝑐2, 𝑐3
′ , 𝑐4

′ = 𝑓 𝑐1, 𝑐2, 𝑐3, 𝑐4



Function-Binding Hash Functions

𝑐1 𝑐2 𝑐3 𝑐4

ℎ12 ℎ34

ℎ

This work: function-binding for disjunction-of-predicates class

𝑓 𝑐1, … , 𝑐𝑛 = ሧ

𝑖∈ 𝑛

𝑔 𝑐𝑖

Suppose 𝑔 𝑐𝑖 = 0 for all 𝑖 ∈ 𝑛

Then 𝑓 𝑐1, … , 𝑐𝑛 = 0

Guarantee: Does not exist any 
openings for ℎ to an input 𝑐𝑖
where 𝑔 𝑐𝑖 = 1

Function-binding hash functions bind to 
a global property of the input

𝑔 𝑐𝑖 ∈ 0,1 is an arbitrary predicate



Using Function-Binding Hash Functions

Encrypt to 𝑆 = 𝑐1, 𝑐2, 𝑐4, 𝑐5

On input 𝑖, 𝑐𝑖 , 𝜋𝑖 , 𝑟𝑖 :
• Membership in 𝑺: Check that 𝜋𝑖 is valid 

for 𝑐𝑖 at position 𝑖 with respect to ℎ
• Correct decryption key: Check that 𝑟𝑖 =
Encrypt pk, 1; 𝑟𝑖

Output 𝑚 if checks pass and ⊥ otherwise.

This program is
checking an NP relation!

Statement: pk, ℎ
Witness: 𝑖, 𝑐𝑖 , 𝜋𝑖 , 𝑟𝑖

Use function-binding hash function for 
the function

𝑓sk(𝑐1, … , 𝑐𝑛) = ሧ

𝑖∈ 𝑛

Decrypt sk, 𝑐𝑖

Note: Will require that the hash key
hides the function

(analogous to index hiding in SSB)

Recall: 𝑐𝑖 = Encrypt pk, 1



Using Function-Binding Hash Functions

Encrypt to 𝑆 = 𝑐1, 𝑐2, 𝑐4, 𝑐5

On input 𝑖, 𝑐𝑖 , 𝜋𝑖 , 𝑟𝑖 :
• Membership in 𝑺: Check that 𝜋𝑖 is valid 

for 𝑐𝑖 at position 𝑖 with respect to ℎ
• Correct decryption key: Check that 𝑟𝑖 =
Encrypt pk, 1; 𝑟𝑖

Output 𝑚 if checks pass and ⊥ otherwise.

This program is
checking an NP relation!

Statement: pk, ℎ
Witness: 𝑖, 𝑐𝑖 , 𝜋𝑖 , 𝑟𝑖

Security proof:
• Step 1: Switch each 𝑐𝑖 in challenge 

ciphertext to encryptions of 0 (as before)
• Step 2: Switch hash function to function 

bind on 𝑓sk

𝑓sk(𝑐1, … , 𝑐𝑛) = ሧ

𝑖∈ 𝑛

Decrypt sk, 𝑐𝑖



𝑓sk(𝑐1, … , 𝑐𝑛) = ሧ

𝑖∈ 𝑛

Decrypt sk, 𝑐𝑖

Using Function-Binding Hash Functions

Encrypt to 𝑆 = 𝑐1, 𝑐2, 𝑐4, 𝑐5

On input 𝑖, 𝑐𝑖 , 𝜋𝑖 , 𝑟𝑖 :
• Membership in 𝑺: Check that 𝜋𝑖 is valid 

for 𝑐𝑖 at position 𝑖 with respect to ℎ
• Correct decryption key: Check that 𝑟𝑖 =
Encrypt pk, 1; 𝑟𝑖

Output 𝑚 if checks pass and ⊥ otherwise.

This program is
checking an NP relation!

Statement: pk, ℎ
Witness: 𝑖, 𝑐𝑖 , 𝜋𝑖 , 𝑟𝑖

Security proof:
• Step 1: Switch each 𝑐𝑖 in challenge 

ciphertext to encryptions of 0 (as before)
• Step 2: Switch hash function to function 

bind on 𝑓sk

For challenge ciphertext:
𝑓sk 𝑐1, … , 𝑐𝑛 = 0

Function binding: no openings exist 
for any 𝑐𝑖 that is an encryption of 1



Using Function-Binding Hash Functions

Encrypt to 𝑆 = 𝑐1, 𝑐2, 𝑐4, 𝑐5

On input 𝑖, 𝑐𝑖 , 𝜋𝑖 , 𝑟𝑖 :
• Membership in 𝑺: Check that 𝜋𝑖 is valid 

for 𝑐𝑖 at position 𝑖 with respect to ℎ
• Correct decryption key: Check that 𝑟𝑖 =
Encrypt pk, 1; 𝑟𝑖

Output 𝑚 if checks pass and ⊥ otherwise.

This program is
checking an NP relation!

Statement: pk, ℎ
Witness: 𝑖, 𝑐𝑖 , 𝜋𝑖 , 𝑟𝑖

Security proof:
• Step 1: Switch each 𝑐𝑖 in challenge 

ciphertext to encryptions of 0 (as before)
• Step 2: Switch hash function to function 

bind on 𝑓sk
• Step 3: No valid witness exists so can 

appeal to security of witness encryption

𝑓sk(𝑐1, … , 𝑐𝑛) = ሧ

𝑖∈ 𝑛

Decrypt sk, 𝑐𝑖



Constructing Function-Binding Hash Functions

Will focus on supporting disjunction-of-predicate class

Follows from (leveled) homomorphic encryption

(similar to constructions of SSB hash functions [HW15])

Leaf nodes: homomorphically 
evaluate 𝑔 on input

ℎ1 ℎ2 ℎ3 ℎ4

ℎ12 ℎ34

ℎ

𝑐1 𝑐2 𝑐3 𝑐4

𝑓 𝑐1, … , 𝑐𝑛 = ሧ

𝑖∈ 𝑛

𝑔 𝑐𝑖

ℎ𝑖 = Encrypt pk0, 𝑔 𝑐𝑖

LHE encryption key
for level zero (leaves)

hash key hk contains encryption 
of 𝑔 under pk0 (so hk hides 𝑔)



Constructing Function-Binding Hash Functions

Will focus on supporting disjunction-of-predicate class

Follows from (leveled) homomorphic encryption

(similar to constructions of SSB hash functions [HW15])

𝑓 𝑐1, … , 𝑐𝑛 = ሧ

𝑖∈ 𝑛

𝑔 𝑐𝑖

ℎ12 = Enc pk1, Dec sk0, ℎ1 ∨ Dec sk1, ℎ2
ℎ1 ℎ2 ℎ3 ℎ4

ℎ12 ℎ34

ℎ

𝑐1 𝑐2 𝑐3 𝑐4

Internal nodes: homomorphically 
decrypt value of child nodes and 
compute OR of results

pk1: encryption key for level 1
sk0: decryption key for level 0 

(encrypted under pk1 and part of hk)



Constructing Function-Binding Hash Functions

Observe: value of root node ℎ is an 
(honest) encryption of 𝑓 𝑐1, … , 𝑐𝑛

Function binding follows by correctness
of the homomorphic encryption scheme 
(ℎ cannot simultaneously be an 
encryption of 0 and 1)

ℎ1 ℎ2 ℎ3 ℎ4

ℎ12 ℎ34

ℎ

𝑐1 𝑐2 𝑐3 𝑐4

Will focus on supporting disjunction-of-predicate class

Follows from (leveled) homomorphic encryption

(similar to constructions of SSB hash functions [HW15])

𝑓 𝑐1, … , 𝑐𝑛 = ሧ

𝑖∈ 𝑛

𝑔 𝑐𝑖



Flexible Broadcast Encryption

public-key directory

pk1

pk2

pk3

pk4

pk5

Ciphertext: Witness encryption of message 
with respect to hash of the public keys in the 
broadcast set

Decryption: “Proof of knowledge” of secret 
key for one of the keys in the broadcast set 𝑆

ct = poly 𝜆, log 𝑆
sk = poly 𝜆
pk = poly 𝜆

Does not yield optimal broadcast encryption in 
the centralized setting



Optimal Broadcast Encryption

public-key directory

pk1

pk2

pk3

pk4

pk5

Does not yield optimal broadcast encryption in 
the centralized setting

Approach: define the public key to be
pk𝑖 ← 𝐻 𝑖

where 𝐻 ⋅ is modeled as a random oracle

Use trapdoor to sample the secret key sk𝑖
associated with pk𝑖

[see paper for details]



Ciphertext-Policy Attribute-Based Encryption
[SW05, GPSW06]

master secret key

“faculty”

“CS”

“faculty”

“math”

“student”

“CS”

message

policy: CS and faculty central trusted authority



Registered Attribute-Based Encryption (ABE)

“faculty”

“CS”

sk1

pk1

Users chooses their own
public/secret key

mpk

aggregated public key

sk2

“student”

“CS”

“faculty”

“math”

pk2

pk3

sk3

Users join the system by 
registering their public key 

along with a set of attributes

message

policy: CS and faculty

ciphertexts associated 
with policy

transparent key curator



Registered ABE from Plain Witness Encryption

𝑐1 𝑐2 𝑐3 𝑐4

ℎ12 ℎ34

ℎ

𝑐𝑖 = (pk𝑖 , 𝑥𝑖)

𝑖th user’s public key 𝑖th user’s attribute

aggregated master public key

Encrypt to policy 𝑃

On input 𝑖, pk𝑖, 𝑥𝑖 , 𝜋𝑖 , sk𝑖 :
• Key is registered: Check that 𝜋𝑖 is valid for 
𝑐𝑖 = (pk𝑖 , 𝑥𝑖) with respect to ℎ

• Knowledge of secret key: Check that sk𝑖 is 
secret key for pk𝑖

• Policy satisfiability: Check that 𝑃 𝑥𝑖 = 1
Output 𝑚 if checks pass and ⊥ otherwise.

Proof relies on similar function-
binding strategyUser registration



Summary

Can we build trustless encryption schemes from weaker 
tools than indistinguishability obfuscation?

This work: introduced notion of function-binding hash functions

Captures SSB hash functions as a special case

Suffices to realize new trustless cryptographic primitives from witness encryption:

Flexible broadcast encryption

Registered ABE for general policies (and unbounded number of users)

In fact, registered ABE implies flexible/distributed 
broadcast encryption [see paper] 



Open Problems

New constructions of function-binding hash functions

Constructions without LWE?

Constructions for other function families?

Our FHE approach generalizes to threshold-of-predicate

New applications of function-binding hash functions?
(with or without witness encryption)

Thank you!

Impossibility for (general) function classes?


	Slide 1: How to Use (Plain) Witness Encryption: Flexible Broadcast, Registered ABE, and More
	Slide 2: Broadcast Encryption
	Slide 3: Broadcast Encryption
	Slide 4: Broadcast Encryption
	Slide 5: Broadcast Encryption
	Slide 6: Broadcast Encryption
	Slide 7: Flexible Broadcast Encryption
	Slide 8: Flexible Broadcast Encryption
	Slide 9: Flexible Broadcast Encryption
	Slide 10: Flexible Broadcast Encryption
	Slide 11: More Broadly: Trustless Cryptography
	Slide 12: More Broadly: Trustless Cryptography
	Slide 13: More Broadly: Trustless Cryptography
	Slide 14: This Work
	Slide 15: Our Results
	Slide 16: Witness Encryption
	Slide 17: Building Flexible Broadcast Encryption
	Slide 18: Building Flexible Broadcast Encryption
	Slide 19: Building Flexible Broadcast Encryption
	Slide 20: Proof Strategy
	Slide 21: Proof Strategy
	Slide 22: Proof Strategy
	Slide 23: Proof Strategy
	Slide 24: Proof Strategy
	Slide 25: Proof Strategy
	Slide 26: Replacing iO with Witness Encryption
	Slide 27: Replacing iO with Witness Encryption
	Slide 28: Replacing iO with Witness Encryption
	Slide 29: Function-Binding Hash Functions
	Slide 30: Function-Binding Hash Functions
	Slide 31: Function-Binding Hash Functions
	Slide 32: Using Function-Binding Hash Functions
	Slide 33: Using Function-Binding Hash Functions
	Slide 34: Using Function-Binding Hash Functions
	Slide 35: Using Function-Binding Hash Functions
	Slide 36: Constructing Function-Binding Hash Functions
	Slide 37: Constructing Function-Binding Hash Functions
	Slide 38: Constructing Function-Binding Hash Functions
	Slide 39: Flexible Broadcast Encryption
	Slide 40: Optimal Broadcast Encryption
	Slide 41: Ciphertext-Policy Attribute-Based Encryption
	Slide 42: Registered Attribute-Based Encryption (ABE)
	Slide 43: Registered ABE from Plain Witness Encryption
	Slide 44: Summary
	Slide 45: Open Problems

