How to Use (Plain) Witness Encryption:

Flexible Broadcast, Registered ABE, and More

Cody Freitag, Brent Waters, and David Wu
May 2023

Broadcast Encryption

Ciphertext specifies a

S ={1,3,6} set of users

. g MM

88

Broadcast Encryption

Functionality: Users in the set can decrypt

Ciphertext specifies a

S ={1,3,6) set of users

a",‘“\

Broadcast Encryption

Functionality: Users in the set can decrypt

Ciphertext specifies a

Security: Users outside the set
learn nothing about message

(even if they collude) S = {1,3,6) set of users
Efficiency: |ct| = |m| + poly(4, logISI)/,/’,’/“\\\
¢¢f””’ /7 \~~‘~~s
¢”‘ l, NN\

-
- /

Broadcast Encryption

Functionality: Users in the set can decrypt
Security: Users outside the set

learn nothing about message Ciphertext specifies a

(even if they collude) S = {1,3,6) set of users

a",‘“\

Efficiency: |ct| = [m| + poly(4,log|S|) _---7, ~

- ~
- ,' ~N~
/ S
/ S

Note: decryption requires % Sso

knowledge of the set S '
8 . Where do the
o o o O EEEE

sk come from?

Broadcast Encryption

Central trusted
authority generates keys

Built-in key escrow
What if the key issuer is

Central point of failure compromised?

Flexible Broadcast Encryption

Users generate public/private
keys independently (as in

G y public-key encryption)

Broadcast encryption without a central authority

Flexible Broadcast Encryption

Users generate public/private
keys independently (as in

G y public-key encryption)

Broadcast encryption without a central authority

Flexible Broadcast Encryption

parameters

Encrypt(pp, {pK;}ies, m) — ct

Can encrypt a message m to any set of public keys

B ok Efficiency: |ct| = [m| + poly(4, log|S|)

A Decrypt(pp, {pK;}ies, sk, ct) = m

ﬂ pke Any secret key associated with broadcast set can decrypt
G Y, Decryption does requires knowledge of public keys in

broadcast set

Broadcast encryption without a central authority

Flexible Broadcast Encryption

9 public-key directory) Encrypt(pp, {pKk;};es,m) — ct

pky Decrypt(pp, {pK;}ics, sk, ct) > m

Security: Users outside the set learn nothing about
message (even if they collude)

pk

’ Generalizes notion of distributed broadcast encryption
pky from [BZ14]
pk< Distributed broadcast encryption: keys are generated

for a particular index, can encrypt to a set of keys

occupying different indices

Broadcast encryption without a central authority

More Broadly: Trustless Cryptography

Functional encryption [Bsw11,0'N10]: augment public-key encryption with
fine-grained decryption capabilities

Limitation: secret keys are issued by a central trusted authority

Recently: removing trust from functional encryption

identity-based encryption — registration-based encryption
[GHMR18, GHMRS19, GV20]

attribute-based encryption — registered attribute-based encryption
[HLW /23]

broadcast encryption — distributed/flexible broadcast encryption
[BZ14]

functional encryption — registered functional encryption
[FFMMRV23, DP23]

More Broadly: Trustless Cryptography

Removing trust for functionalities beyond identity-based
encryption often requires stronger cryptographic machinery

Recently: removing trust from functional encryption

identity-based encryption — registration-based encryption
[GHMR18, GHMRS19, GV20]

attribute-based encryption — registered attribute-based encryption
[HLW /23]

Registered attribute-based encryption:
* Pairing-based construction [HLWW23]: bounded number of users, large CRS, Boolean formula policies
* Indistinguishability obfuscation [HLWW?23]: unbounded users, transparent setup, arbitrary policies

More Broadly: Trustless Cryptography

Removing trust for functionalities beyond identity-based
encryption often requires stronger cryptographic machinery

Recently: removing trust from functional encryption

Distributed broadcast and registered functional encryption only
known from indistinguishability obfuscation (iO)

broadcast encryption — distributed/flexible broadcast encryption
[BZ14]

functional encryption — registered functional encryption

[FFMMRV23, DP23]

This Work

Can we build trustless encryption schemes from weaker
tools than indistinguishability obfuscation?

Our focus: plain witness encryption

* Witness encryption seemingly easier to realize than indistinguishability obfuscation
[BJKPW18, CVW18, Tsa22, VWW?22]
* Does notimplyiO in a black-box manner [GMM18]

Witness encryption commonly regarded as “obfustopia” primitive and yet
seems much weaker than iO

This work: new tools for realizing obfustopia primitives from plain witness
encryption

Can we build trustless encryption schemes from weaker
tools than indistinguishability obfuscation?

Using witness encryption (and LWE), we obtain:

Flexible broadcast encryption
* Previously: distributed broadcast encryption from iO [BZ14]

Registered ABE for general policies and unbounded number of users
* Previously: only known from iO [HLW'\V/23]

Optimal broadcast encryption (centralized)
* Previously: broadcast encryption not previously known from plain witness

encryption (but known from iO, evasive LWE, or pairings + lattices)

New technique: function-binding hash functions

Witness Encryption

[GGSW13]
Defined with respect to an NP relation R
(and associated NP language L)
Encrypt(x,m) — ct
Encrypts a message m with respect to a statement x
Decrypt(w, ct) » m

Decrypts a ciphertext given knowledge of an associated NP witness w

Functionality: if R(x,w) = 1, decryption recovers the message m

Security: if x & L, then ct hides message

Building Flexible Broadcast Encryption

Consider an approach using indistinguishability obfuscation:

@ public-key directory)

B i« Public parameters: pk for a (vanilla) public-key
encryption scheme

User public key: encryption of 1 with randomness r:
¢ « Encrypt(pk,1;7)

User secret key: randomness r

=R => R - >
®)
g

Building Flexible Broadcast Encryption

Consider an approach using indistinguishability obfuscation:

9 public-key directorVD Encryptto § = {Cl, y Ca, C5}

ﬂ “1 Step 1: Construct Merkle tree on §

Building Flexible Broadcast Encryption

Consider an approach using indistinguishability obfuscation:

@ public-key directorYD Encryptto § = {Cl, y Ca, C5}

ﬂ ‘1 Step 2: Obfuscate the following program

On input ((i, C,;),n,;,ri):
* Membership in §: Check that ; is a Merkle inclusion
proof for key c; at position i with respect to the hash h

ﬂ Cy * Knowledge of secret key: Check that r; is the secret key:
c; = Encrypt(pk, 1; 1;7)
ﬂ Cs If both checks pass, output m. Otherwise, output L.

Hard-coded: public parameter pk, hash S, message m

Proof Strategy

Encryptto S = {c,,c,cy, Cc}

Oninput (i, ¢;, m;, 17):
* Membership in §: Check that m; is valid
for ¢; at position i with respect to h
* Knowledge of secret key: Check that
r; = Encrypt(pk, 1; ;)
Output m if checks pass and L otherwise.

Step 1: Replace c¢; < Encrypt(pk, 0)

Indistinguishable by semantic security of public-key encryption scheme

Proof Strategy

Encryptto S = {c,,c,cy, Cc}

Oninput (i, c;, m;, 1;):
* Membership in §: Check that m; is valid
for ¢; at position i with respect to h
* Knowledge of secret key: Check that _ This condition is

r; = Encrypt(pk, 1;17) unsatisfiable for c; € S
Output m if checks pass and L otherwise.

Problem: But could still exist valid
openings forc; & S

Step 1: Replace c¢; < Encrypt(pk, 0)

Indistinguishable by semantic security of public-key encryption scheme

Proof Strategy

Encryptto S = {c,,c,cy, Cc}

Oninput (i, ¢;, m;, 17):
* Membership in §: Check that m; is valid
for ¢; at position i with respect to h
« Knowledge of secret key: Check that Ensures that the only

1 = Encrypt(pk, 1;7;) opening atindexi = 1 to
Output m if checks pass and L otherwise.

his c; = Encrypt(pk, 0)

Step 2: Use a somewhere statistically-binding (SSB) hash function to compute h
and statistically bind atindexi =1

Implication: On all inputs where i = 1, program will output L

Proof Strategy

ldentical functionality so

Encryptto § = {c1, ¢, €4, Cs) indistinguishable under iO

Oninput (i, c;, m;, 1;): On input (i, c;, m;, 1;):
* Membership in §: Check that m; is valid * Index threshold: i > 1
for ¢; at position i with respect to h * Membership in §: Check that m; is valid
* Knowledge of secret key: Check that ~ for ¢; at position i with respect to h
r; = Encrypt(pk, 1; ;) * Knowledge of secret key: Check that
Output m if checks pass and L otherwise. r; = Encrypt(pk, 1; ;)

Output m if checks pass L otherwise.

Step 2: Use a somewhere statistically-binding (SSB) hash function to compute h
and statistically bind atindexi =1

Implication: On all inputs where i = 1, program will output L

Proof Strategy

Encryptto S = {c,,c,cy, Cc}

ldentical functionality so
indistinguishable under iO

On input (i, c;, T}, 1;):
* Index threshold: i > 1
* Membership in §: Check that m; is valid
for ¢; at position i with respect to h
* Knowledge of secret key: Check that
r; = Encrypt(pk, 1; ;)
Output m if checks pass L otherwise.

2

On input (i, c;, m;, 1;):
* Index threshold: i > 2
* Membership in §: Check that m; is valid
for ¢; at position i with respect to h
* Knowledge of secret key: Check that
r; = Encrypt(pk, 1; ;)
Output m if checks pass L otherwise.

Step 3: Use a somewhere statistically-binc
and statistically bind atindex i = 2

ing (SSB) hash function to compute h

Implication: On all inputs where i = 2, program will output L

Proof Strategy

ldentical functionality so

Encrypt to § = 1¢1, €2, €4, C5} indistinguishable under iO
On input (i, c;, T}, 1;): On input (i, c;, m;, 1;):

* Index threshold: i > 4

* Membership in §: Check that m; is valid Output L.

2

for ¢; at position i with respect to h
* Knowledge of secret key: Check that
r; = Encrypt(pk, 1; ;)
Output m if checks pass L otherwise.

Repeat process for each public-key in S
Final program requires that input threshold i > |S|, which is never satisfied

Ciphertext indistinguishable from program that outputs L on all inputs

Replacing iO with Witness Encryption

Encryptto S = {c,,c,cy, Cc}

Oninput (i, ¢;, m;, 17):
* Membership in §: Check that m; is valid
for ¢; at position i with respect to h
* Knowledge of secret key: Check that
r; = Encrypt(pk, 1; ;)
Output m if checks pass and L otherwise.

This program is
checking an NP relation!

Statement: (pk, h)
Witness: (i, Ci, T, Ti)

What happens if we replace iO
with witness encryption?

Challenge: need to argue that there
are no witnesses for (pk, h)

Can replace all ¢c; € S with encryptions
of 0, but there can still be openings to h
that are encryptions of 1 (since h is
computationally binding)

Replacing iO with Witness Encryption

Encryptto S = {c{, ., 4, Cs} What happens if we replace iO
on input (i, c;, 7;, 17): with witness encryption?
* Membership in §: Check that m; is valid
for c; at position i with respect to h Challenge: need to argue that there
¢ KnOWIEdge of secret key: Check that are no Witnesses for (pk h)
r; = Encrypt(pk, 1;7;) Bl '
Output m if check 1 ise. : :
utput m if checks pass and L otherwise Can replace all ¢c; € S with encryptions

of 0, but there can still be openings to h
that are encryptions of 1 (since h is

With obfuscation: i can statistically , o
computationally binding)

bind to one index; obfuscated
program saves progress - NO analog with plain witness encryption

Replacing iO with Witness Encryption

Encryptto S = {c{, ., 4, Cs} What happens if we replace iO
on input (i, c;, 7;, 17): with witness encryption?
* Membership in §: Check that m; is valid
- ition j with respect to / Challenge: need to argue that there

SEHR U UNAIRC TR NI are no witnesses for (pk, h)

results in long ciphertext
(linear in |S|)

Can replace all ¢c; € S with encryptions
of 0, but there can still be openings to h
that are encryptions of 1 (since h is
computationally binding)

With obfuscation: i can statistically
bind to one index; obfuscated
program saves progress - NO analog with plain witness encryption

Function-Binding Hash Functions

Somewhere statistically binding:
can only open hash of (¢4, ..., ¢,)
to value ¢; at a particular index i

if hash key is binding at i = 2, then ¢, is only

possible opening for h at index 2

Function-Binding Hash Functions

Our approach: hash function h statistically binds to a function of the input

Function-binding: can only open
hash of (¢4, ..., ¢;;) to a value ¢; if
there exists some input (cy, ..., Cy,)
where ¢; = ¢; such that

fler, micn) = fc1, s Cn)

only possible openings are to inputs ¢, where there exists
/ / / / / AN
1, C3,cq Where f(cq,cy,c3,¢4) = f(cq,Cy,C3,Cq)

Hash key associated with the specific function f

Function-Binding Hash Functions

This work: function-binding for disjunction-of-predicates class

a Suppose g(c;) = 0foralli € [n]

@ @ Then f(cq,...,c,;) =0

Guarantee: Does not exist any

G a e a openings for h to an input ¢;
where g(¢;) = 1

flcq,onicn) = \/ g(c;)

Function-binding hash functions bind to
i€[n]

a global property of the input

g(c;) € {0,1} is an arbitrary predicate

Using Function-Binding Hash Functions

Use function-binding hash function for

Encryptto S = {c{,c>,Ca,C
vP L1 » Cs the function

Oninput (i, ¢;, m;, 17):
« Membership in S: Check that 7; is valid fsk(Cqy e, Cpy) = \/ Decrypt(sk, c;)
for ¢; at position i with respect to h i€[n]
* Correct decryption key: Check that r; =
Encrypt(pk, 1;1;)
Output m if checks pass and L otherwise. Recall: ¢; = Encrypt(pk, 1)

This program is
checking an NP relation! Note: Will require that the hash key
hides the function
(analogous to index hiding in SSB)

Statement: (pk, h)
Witness: (i, Ci, T, Ti)

Using Function-Binding Hash Functions

Security proof:

Encryptto § = {cy, ¢, ¢4, Cs} * Step 1: Switch each c; in challenge

Oninput (i,c;, ;, 17): ciphertext to encryptions of 0 (as before)
* Membership in S: Check that 7; is valid * Step 2: Switch hash function to function
for c; at position i with respect to h bind on fgx
* Correct decryption key: Check that r; =
Encrypt(pk, 1;1;)
Output m if checks pass and L otherwise.

This program is
checking an NP relation!

Statement: (pk, h)

faer,) = \/ Decrypt(sk,c)
i€[n]
Witness: (i, Ci,ﬂ'i;ri)

Using Function-Binding Hash Functions

Encryptto S = {c,,c,cy, Cc}

Oninput (i, ¢;, m;, 17):
* Membership in §: Check that m; is valid
for ¢; at position i with respect to h
* Correct decryption key: Check that r; =
Encrypt(pk, 1;1;)
Output m if checks pass and L otherwise.

This program is
checking an NP relation!

Statement: (pk, h)
Witness: (i, Ci, T, Ti)

Security proof:

* Step 1: Switch each ¢; in challenge
ciphertext to encryptions of O (as before)

e Step 2: Switch hash function to function

bind on f¢i

For challenge ciphertext:
fsk(cl: 500) Cn) =0

Function binding: no openings exist
for any ¢; that is an encryption of 1

Using Function-Binding Hash Functions

Encryptto S = {c,,c,cy, Cc}

Oninput (i, ¢;, m;, 17):
* Membership in §: Check that m; is valid
for ¢; at position i with respect to h
* Correct decryption key: Check that r; =
Encrypt(pk, 1;1;)
Output m if checks pass and L otherwise.

This program is
checking an NP relation!

Statement: (pk, h)
Witness: (i, Ci, T, Ti)

Security proof:

Step 1: Switch each ¢; in challenge
ciphertext to encryptions of O (as before)
Step 2: Switch hash function to function
bind on f¢i

Step 3: No valid witness exists so can
appeal to security of witness encryption

fsk(Cqy vy Cp) = \/ Decrypt(sk, c;)
i€[n]

Constructing Function-Binding Hash Functions

Will focus on supporting disjunction-of-predicate class
Follows from (leveled) homomorphic encryption fley, icn) = \/ g(c;)
(similar to constructions of SSB hash functions [Hw1s)) (€[n]

Leaf nodes: homomorphically
evaluate g on input

hash key hk contains encryption
of g under pk, (so hk hides g)
h; = Encrypt(pko, g(cl-))

LHE encryption key

for level zero (leaves)

Constructing Function-Binding Hash Functions

Will focus on supporting disjunction-of-predicate class
Follows from (leveled) homomorphic encryption fley, icn) = \/ g(c;)
(similar to constructions of SSB hash functions [Hw1s)) (€[n]

Internal nodes: homomorphically
decrypt value of child nodes and
compute OR of results

hi, = Enc(pkl, Dec(skg, hy) V Dec(skq, hz))

pk;: encryption key for level 1
sky: decryption key for level O
(encrypted under pk; and part of hk)

Constructing Function-Binding Hash Functions

Will focus on supporting disjunction-of-predicate class
Follows from (leveled) homomorphic encryption fley, icn) = \/ g(c;)
(similar to constructions of SSB hash functions [Hw1s)) (€[n]

Observe: value of root node h is an
(honest) encryption of f(cq, ..., cy,)

Function binding follows by correctness
of the homomorphic encryption scheme
(h cannot simultaneously be an
encryption of 0 and 1)

Flexible Broadcast Encryption

Ciphertext: Witness encryption of message
@ public-key directory) with respect to hash of the public keys in the
ﬂ broadcast set

Decryption: “Proof of knowledge” of secret
key for one of the keys in the broadcast set S

ﬂ €
a) ct| = poly(4,log|S|)
P sk| = poly(2)
C B ok pk| = poly(4)
Y

Does not yield optimal broadcast encryption in
the centralized setting

Optimal Broadcast Encryption

Does not yield optimal broadcast encryption in
@ public-key directory)

the centralized setting

Approach: define the public key to be
pk; <« H(i)
where H(-) is modeled as a random oracle

Use trapdoor to sample the secret key sk;
) associated with pk;

[see paper for details]

Ciphertext-Policy Attribute-Based Encryption
[SWO05, GPSWO06]

-

LW//}nasterSecretkey

message
i

policy: CS and faculty

central trusted authority

“faculty” “faculty” “student”

\\CS// “math” \\CS//

Registered Attribute-Based Encryption (ABE)

transparent key curator

aggregated public key

k3
Users chooses their own Users join the system by

public/secret key registering their public key
along with a set of attributes

ciphertexts associated
et A with policy il

policy: CS and faculty

“student”
\\CSII
P

“faculty”
\\CS/I

“faculty”
\\math//

pk @uﬂ%

Registered ABE from Plain Witness Encryption

G —_—) Jggregated master public key

Encrypt to policy P

On input (i, pk;, x;, 7;, sk;):
* Key is registered: Check that m; is valid for
c; = (pk;, x;) with respect to h
* Knowledge of secret key: Check that sk; is
secret key for pk;
_ * Policy satisfiability: Check that P(x;) = 1
Ci — (pku xl) Output m if checks pass and L otherwise.

:th ’ : :th ’ :
i user’s public key " user’s attribute Proof relies on similar function-

User registration binding strategy

Summary

Can we build trustless encryption schemes from weaker
tools than indistinguishability obfuscation?

This work: introduced notion of function-binding hash functions

Captures SSB hash functions as a special case

Suffices to realize new trustless cryptographic primitives from witness encryption:
Flexible broadcast encryption
Registered ABE for general policies (and unbounded number of users)

In fact, registered ABE implies flexible/distributed

broadcast encryption [see paper]

Open Problems

New constructions of function-binding hash functions
Constructions without LWE?
Constructions for other function families?

Our FHE approach generalizes to threshold-of-predicate

Impossibility for (general) function classes?

New applications of function-binding hash functions?
(with or without witness encryption)

Thank you!

	Slide 1: How to Use (Plain) Witness Encryption: Flexible Broadcast, Registered ABE, and More
	Slide 2: Broadcast Encryption
	Slide 3: Broadcast Encryption
	Slide 4: Broadcast Encryption
	Slide 5: Broadcast Encryption
	Slide 6: Broadcast Encryption
	Slide 7: Flexible Broadcast Encryption
	Slide 8: Flexible Broadcast Encryption
	Slide 9: Flexible Broadcast Encryption
	Slide 10: Flexible Broadcast Encryption
	Slide 11: More Broadly: Trustless Cryptography
	Slide 12: More Broadly: Trustless Cryptography
	Slide 13: More Broadly: Trustless Cryptography
	Slide 14: This Work
	Slide 15: Our Results
	Slide 16: Witness Encryption
	Slide 17: Building Flexible Broadcast Encryption
	Slide 18: Building Flexible Broadcast Encryption
	Slide 19: Building Flexible Broadcast Encryption
	Slide 20: Proof Strategy
	Slide 21: Proof Strategy
	Slide 22: Proof Strategy
	Slide 23: Proof Strategy
	Slide 24: Proof Strategy
	Slide 25: Proof Strategy
	Slide 26: Replacing iO with Witness Encryption
	Slide 27: Replacing iO with Witness Encryption
	Slide 28: Replacing iO with Witness Encryption
	Slide 29: Function-Binding Hash Functions
	Slide 30: Function-Binding Hash Functions
	Slide 31: Function-Binding Hash Functions
	Slide 32: Using Function-Binding Hash Functions
	Slide 33: Using Function-Binding Hash Functions
	Slide 34: Using Function-Binding Hash Functions
	Slide 35: Using Function-Binding Hash Functions
	Slide 36: Constructing Function-Binding Hash Functions
	Slide 37: Constructing Function-Binding Hash Functions
	Slide 38: Constructing Function-Binding Hash Functions
	Slide 39: Flexible Broadcast Encryption
	Slide 40: Optimal Broadcast Encryption
	Slide 41: Ciphertext-Policy Attribute-Based Encryption
	Slide 42: Registered Attribute-Based Encryption (ABE)
	Slide 43: Registered ABE from Plain Witness Encryption
	Slide 44: Summary
	Slide 45: Open Problems

