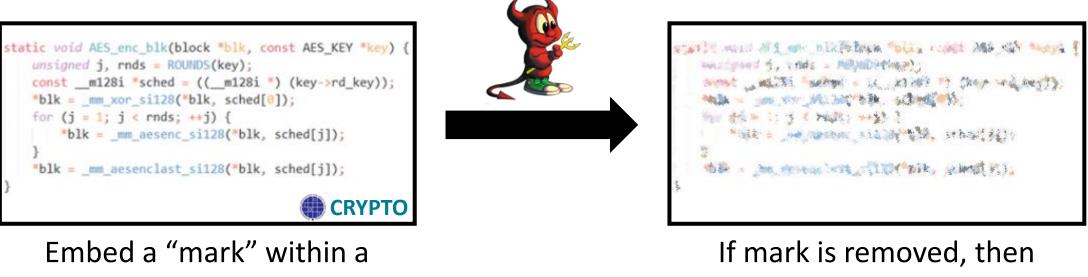
Watermarking PRFs from Lattices via Extractable PRFs

Sam Kim and David J. Wu

#### [NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17, KW17, QWZ18, GKMWW19]



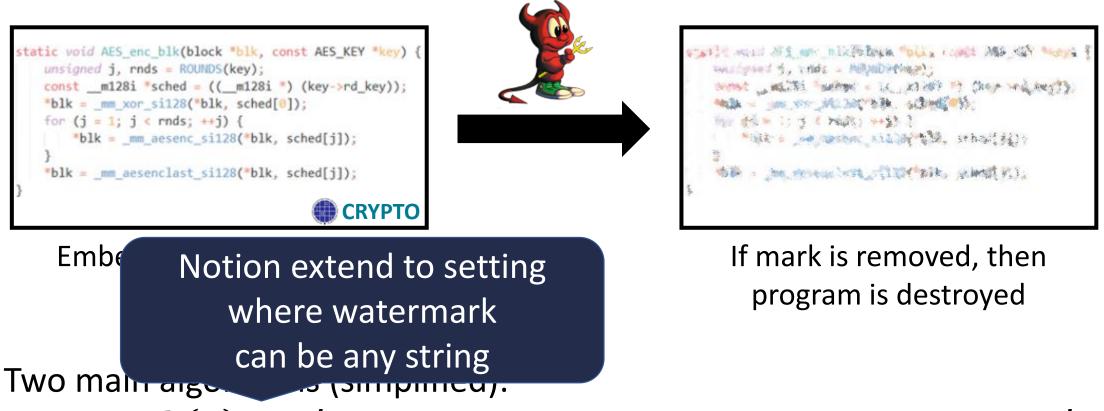
program

program is destroyed

Two main algorithms (simplified):

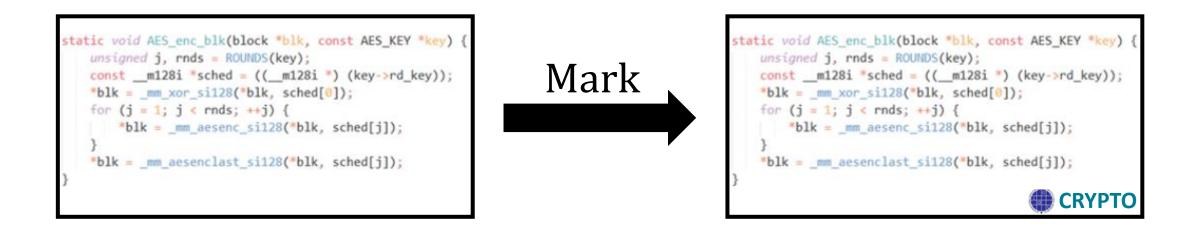
- Mark(C)  $\rightarrow C'$ : Takes a circuit C and outputs a marked circuit C'
- Verify(C')  $\rightarrow$  {0,1}: Tests whether a circuit C' is marked or not

#### [NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17, KW17, QWZ18, GKMWW19]



- Mark(C)  $\rightarrow C'$ : Takes a circuit C and outputs a marked circuit C'
- Verify(C')  $\rightarrow$  {0,1}: Tests whether a circuit C' is marked or not

[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17, KW17, QWZ18, GKMWW19]

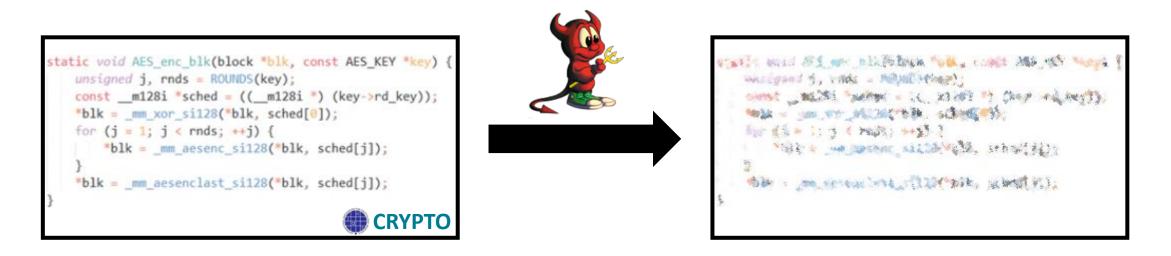


**Functionality-preserving:** On input a circuit C, the Mark algorithm outputs a circuit C' where

$$C(x) = C'(x)$$

on almost all inputs x

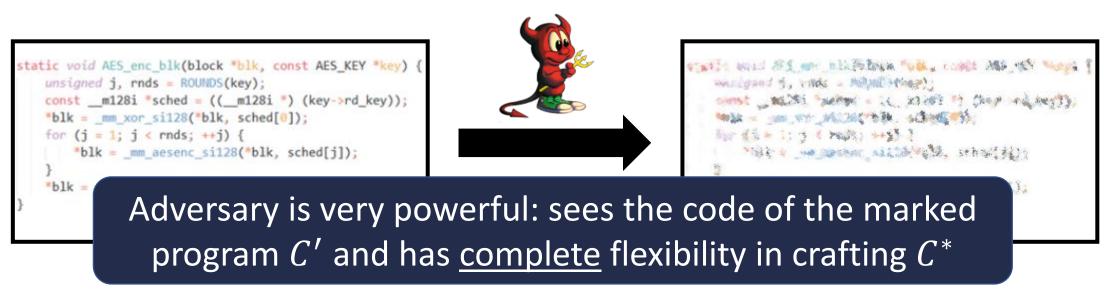
[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17, KW17, QWZ18, GKMWW19]



**Unremovability:** Given a marked program C', no efficient adversary can construct a circuit  $C^*$  where

- $C^*(x) = C'(x)$  on almost all inputs x
- The circuit  $C^*$  is unmarked:  $Verify(C^*) = 0$

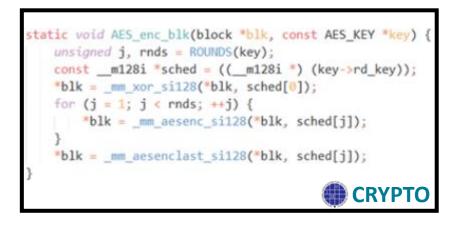
[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17, KW17, QWZ18, GKMWW19]



**Unremovability:** Given a marked program C', no efficient adversary can construct a circuit  $C^*$  where

- $C^*(x) = C'(x)$  on almost all inputs x
- The circuit  $C^*$  is unmarked:  $Verify(C^*) = 0$

#### [NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17, KW17, QWZ18, GKMWW19]





castic word did\_marc\_blic2eDock\_Took\_\_condt\_ddd\_mdd\_Twegd wwrdgawd 5, vade - MO(ME(Hime)) const\_\_\_addDdi Tawhar - 14, xtarfi 12 (kmp red\_dwgdd) Mak - \_\_marchigertak, schodig (5) Sur din - 11 2 4 March - schodig (5) Sur din - 11 2 4 March - schodig (5) Sur din - 11 2 4 March - schodig (5)

Learning the original (unmarked) function gives a way to remove the watermark

- Notion only achievable for functions that are not learnable
- Focus has been on cryptographic functions

### Watermarking Cryptographic Programs

[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17, KW17, QWZ18, GKMWW19]



• Focus of this work: watermarking PRFs [CHNVW16, BLW17, KW17, QWZ18]

### Watermarking Cryptographic Programs

[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17, KW17, QWZ18, GKMWW19]



A function whose input-output behavior is unpredictable (looks like a random function) – e.g., AES

ng PRFs [chnvw16, blw17, kw17, qwz18]

### Watermarking Cryptographic Programs

[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17, KW17, QWZ18, GKMWW19]



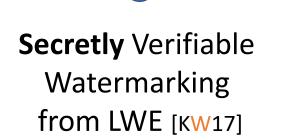
### Watermarkable PRFs

### [CHNVW16]: Watermark PRFs from **iO** + **OWFs Publicly** verifiable

Can we watermark PRFs from standard assumptions?

[KW17]: Watermark PRFs from standard assumptions (LWE) Secretly verifiable

### Watermarkable PRFs





Publicly Verifiable Watermarking [CHNVW16]

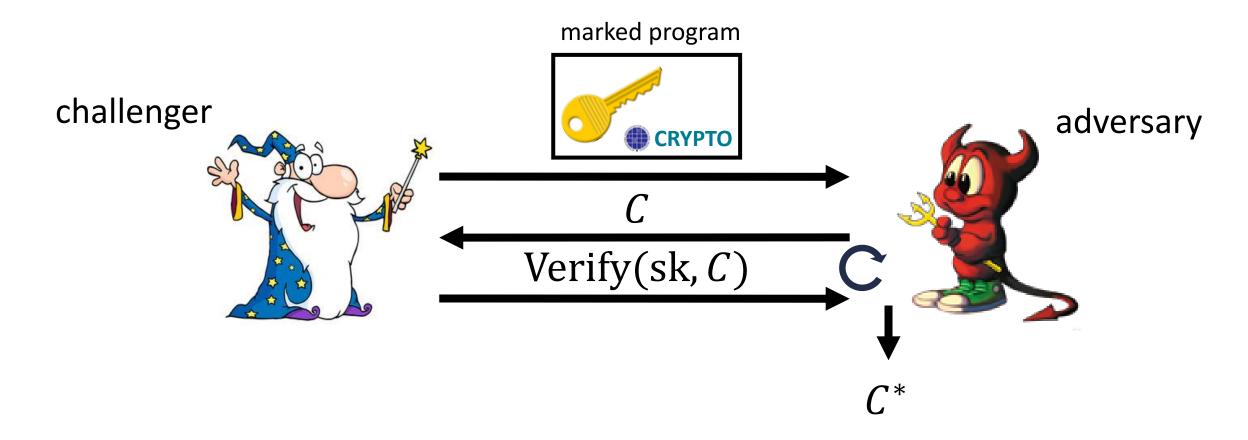
### A Naïve Attempt at Public Verifiability

# Just make the verification key public!

**Problem:** Knowledge of the verification key allows adversary to trivially remove watermark

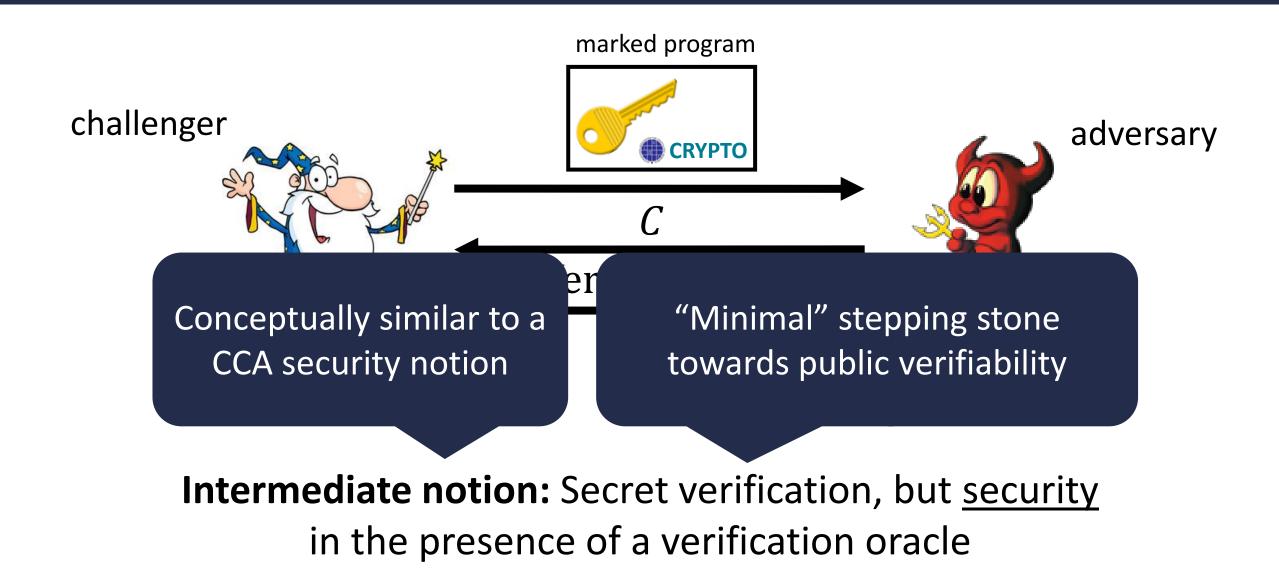
**Secretly** Verifiable Watermarking from LWE [KW17] In fact: Even <u>oracle access</u> to the verification key is sufficient to break unremovability ("verifier rejection" problem)

### **Between Public and Secret Verification**



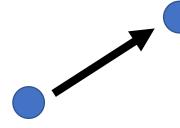
Intermediate notion: Secret verification, but <u>security</u> in the presence of a verification oracle

### **Between Public and Secret Verification**



### Watermarkable PRFs

#### Secretly Verifiable Watermarking from CCA [QwZ18]



**Secretly** Verifiable Watermarking from LWE [KW17]



Publicly Verifiable Watermarking [CHNVW16]

### Watermarkable PRFs

Secretly Verifiable Watermarking from CCA [Qwz18]

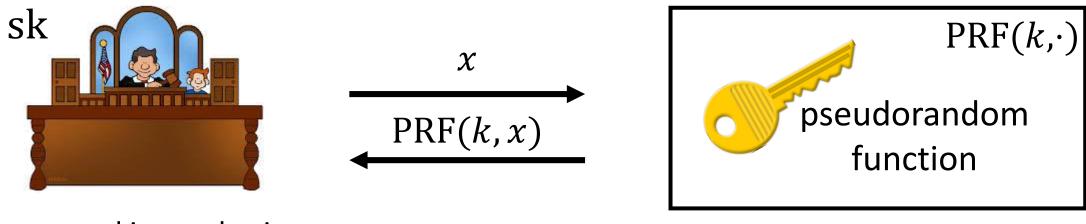


Secretly Verifiable Watermarking from LWE [KW17] **Good:** Achieves security in the presence of a verification oracle

**Limitation:** Knowledge of the verification key breaks PRF security (even *unmarked* keys)

### **Security Against the Authority**





watermarking authority

After seeing single query (on any x), authority can distinguish output of PRF from output of random function

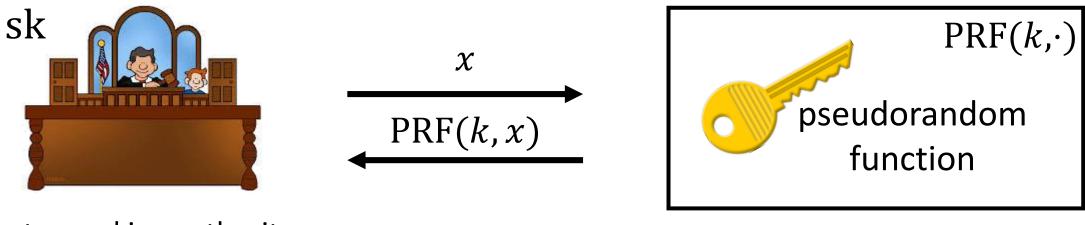
### **Security Against the Authority**

# Implication: Knowledge of the verification key completely breaks PRF security

### (notion still seems far publicly-verifiable setting)

After seeing single query (on any x), authority can distinguish output of PRF from output of random function

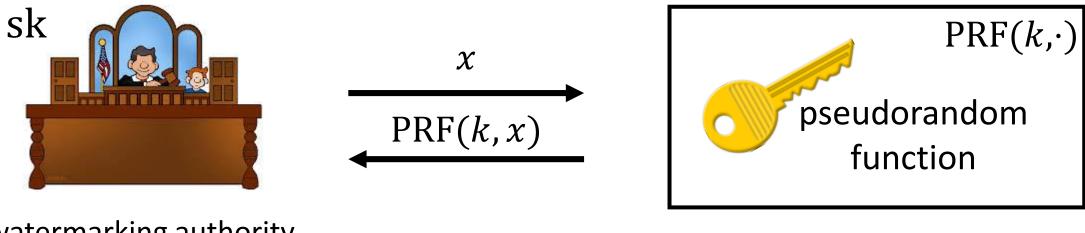
# Don't We Have to Trust the Authority Anyways?



watermarking authority

**Not necessarily:** marking algorithm can be implemented using a two-party computation, so authority never needs to see *any* PRF keys in the clear

# Don't We Have to Trust the Authority Anyways?



watermarking authority

**This work:** New watermarkable PRF that provides security even against the watermarking authority

### **Our Results**

New **secretly verifiable** watermarking for PRF from LWE

- Unremovability holds in the presence of the verification oracle
- weak pseudorandomness even against authority (*T*-restricted pseudorandomness)
- As secure as any other PRF family from LWE
  - Relies on worst-case lattice problems with **nearly-polynomial**  $(n^{\omega(1)})$  approximation factors

### **Our Results**

### New secretly verifiable wate

- Unremovability holds in
- weak pseudorandomne

Previous constructions (with messageembedding) required <u>private</u> constrained PRFs (which requires quasi-polynomial or sub-exponential approximation factors)

- As secure as any other PRF family from LWE
  - Relies on worst-case lattice problems with **nearly-polynomial**  $(n^{\omega(1)})$  approximation factors
- New abstraction: extractable PRF

### **Starting Point: Puncturable PRF**

#### [BW13, BGI14, KPTZ13]



Punctured key  $k_{x^*}$  can be used to evaluate PRF on all points  $x \neq x^*$ (value at  $x^*$  is pseudorandom even given  $k_{x^*}$ )

**Private puncturing**: punctured key  $k_{x^*}$  also hides  $x^*$ **Programmability**: program  $F(k_{x^*}, x^*) \coloneqq y^*$ 

# **From Puncturing to Watermarking**





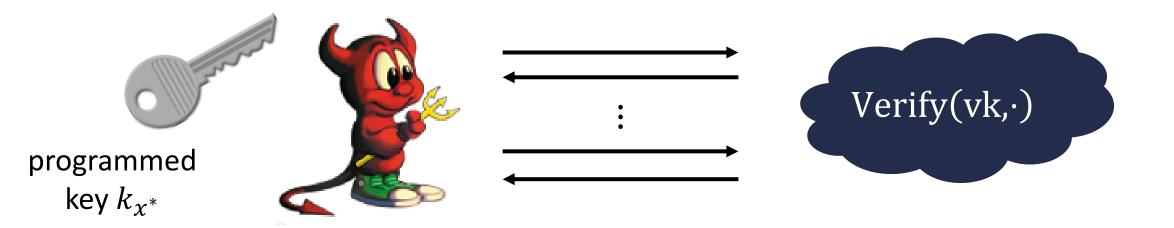
### Marking algorithm:

- 1. Derive a special point  $(x^*, y^*)$  from input/output behavior of PRF
- 2. Define a marked circuit to be  $F(k_{x^*}, \cdot)$

Verification algorithm:

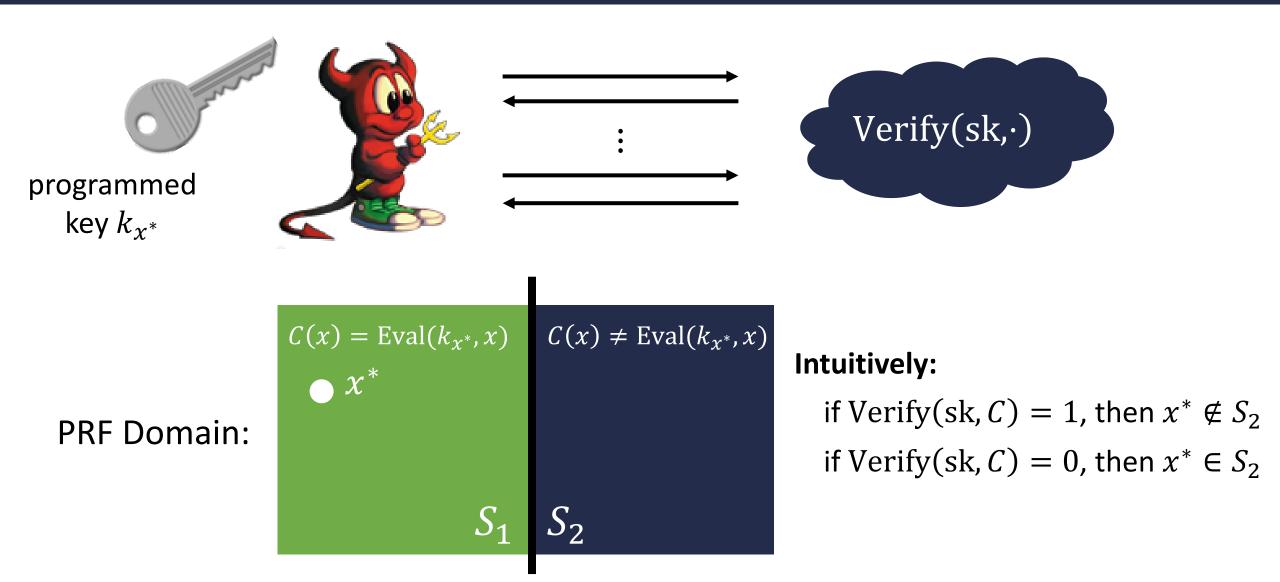
1. Test if 
$$C(x^*) = y^*$$

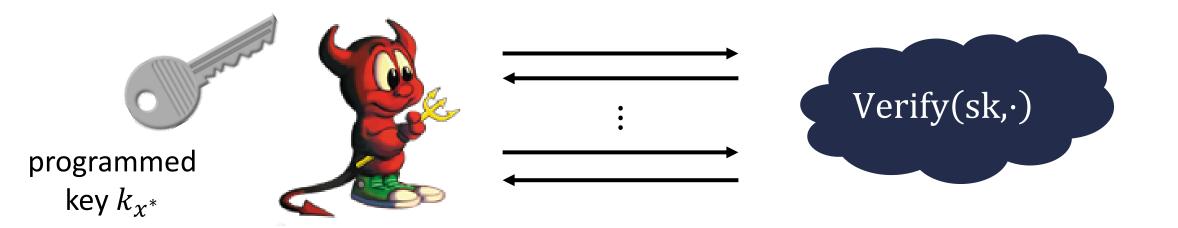
**Security**: Punctured point  $x^*$  is hidden

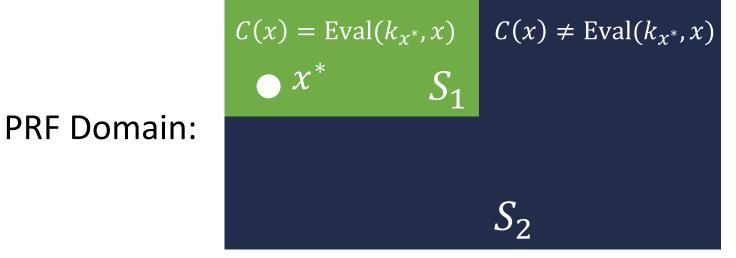


**PRF** Domain:









#### Intuitively:

if Verify(sk, C) = 1, then  $x^* \notin S_2$ 

if Verify(sk, C) = 0, then  $x^* \in S_2$ 

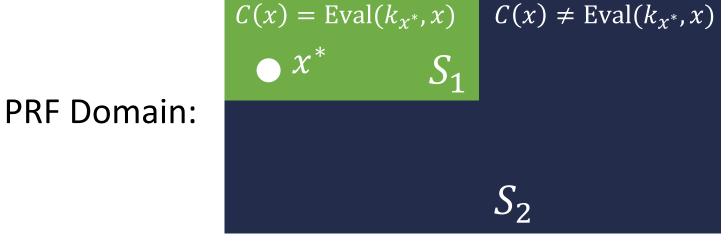
Eventually, adversary recovers special point  $x^*$ 

programmed key  $k_{x^*}$ 



Very similar to a "verifier rejection" attack encountered in settings like designated-verifier proof systems, CCAsecurity, etc.

**Solution:** Make the set of "valid" circuits detectable (i.e., cannot change too many points and still preserve mark)



#### Intuitively:

if Verify(sk, C) = 1, then  $x^* \notin S_2$ 

if Verify(sk, C) = 0, then  $x^* \in S_2$ 

Eventually, adversary recovers special point  $x^*$ 

### **Our Notion: Extractable PRF**



Punctured key  $k_{x^*}$  can be used to evaluate PRF on all points  $x \neq x^*$ 

**Private puncturing**: punctured key  $k_{x^*}$  also hides  $x^*$  **Programmability**: program  $F(k_{x^*}, x^*) \coloneqq y^*$ **Extractability**: point  $F(k_{x^*}, z) \coloneqq \text{Encode}(k)$  encode original PRF key k

### **Our Notion: Extractable PRF**



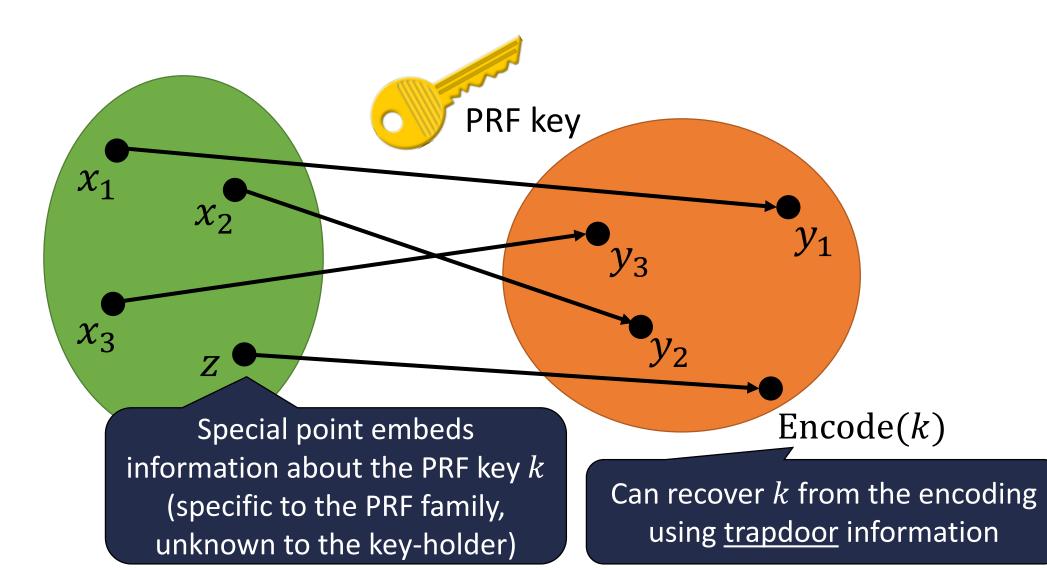
Punctured key  $k_{x^*}$  can be used to evaluate PRF on all points  $x \neq x^*$ 

**Private puncturing**: puncture **Programmability**: program F

Decode with trapdoor td (part of watermarking sk)

**Extractability**: point  $F(k_{x^*}, z) \coloneqq \text{Encode}(k)$  encode original PRF key k

### **Our Notion: Extractable PRF**



#### Marking algorithm:

- 1. Derive a special point  $(x^*, y^*)$  from input/output behavior of PRF
- 2. Define a marked circuit to be  $F(k_{\chi^*}, \cdot)$

#### Verification algorithm:

- 1. Test if  $C(x^*) = y^*$
- 2. Extract key k and test if  $C(\cdot) \approx F(k, \cdot)$

Adversary can rule out only a small fraction of domain

(output unmarked if key extraction fails)

3. Accept only if both conditions satisfied

**In fact:** extractability enables a <u>simpler</u> marking procedure

#### Marking algorithm:

- 1. Derive a special point  $(x^*, y^*)$  from input/output behavior of PRF
- 2. Define a marked circuit to be  $F(k_{\chi^*}, \cdot)$

### Verification algorithm:

1. Test if  $C(x^*) = v^*$ 

2. Extract key k

3. Accept only if

Instead of programming the value at  $x^*$ , <u>puncture</u> the PRF at  $x^*$ : circuit is <u>marked</u> if  $C(x^*) \neq F(k, x^*)$ where k is the extracted key

In fact: extractability enables a simpler marking procedure

### Marking algorithm:

- 1. Puncture key at  $x^*$  to obtain a key  $k_{x^*}$
- 2. Define a marked key to be  $F(k_{x^*}, \cdot)$

### **Verification algorithm**:

To remove watermark, need to fix the value of the PRF at the punctured point (i.e., <u>guess</u> a pseudorandom value)

1. Extract key k and test if  $C(\cdot) \approx F(k, \cdot)$ 

(output unmarked if key extraction fails)

2. Output marked if  $C(x^*) \neq F(k, x^*)$  and unmarked otherwise

In fact: extractability enables a simpler marking procedure

### Marking algorithm:

- 1. Puncture key at  $x^*$  to obtain a key  $k_{x^*}$
- 2. Define a marked key to be  $F(k_{x^*}, \cdot)$

### Verification algorithm:

To remove watermark, need to fix the value of the PRF at the punctured point (i.e., <u>guess</u> a pseudorandom value)

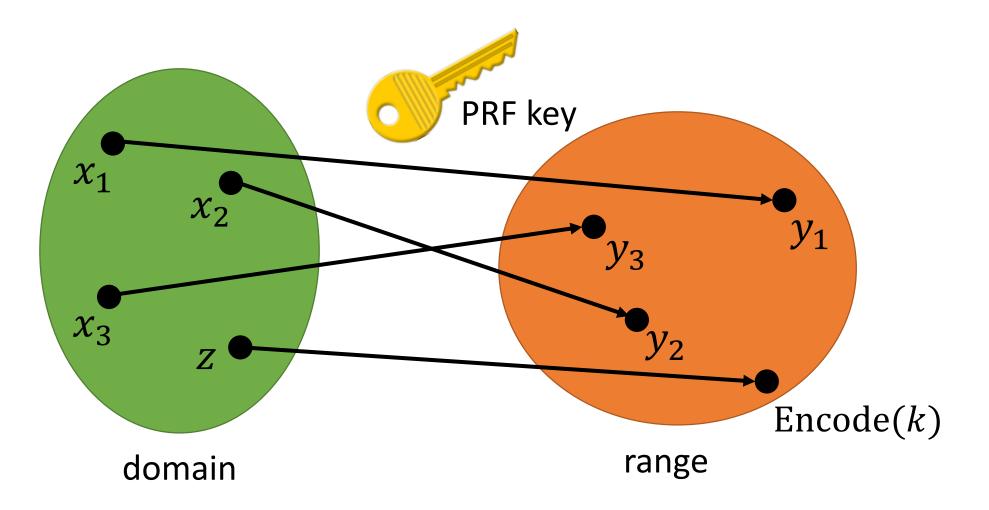
1. Extract key k and test if  $C(\cdot) \approx F(k, \cdot)$ 

(output unmarked if key extraction fails)

2. Output marked if  $C(x^*) \neq F(k, x^*)$  and unmarked otherwise

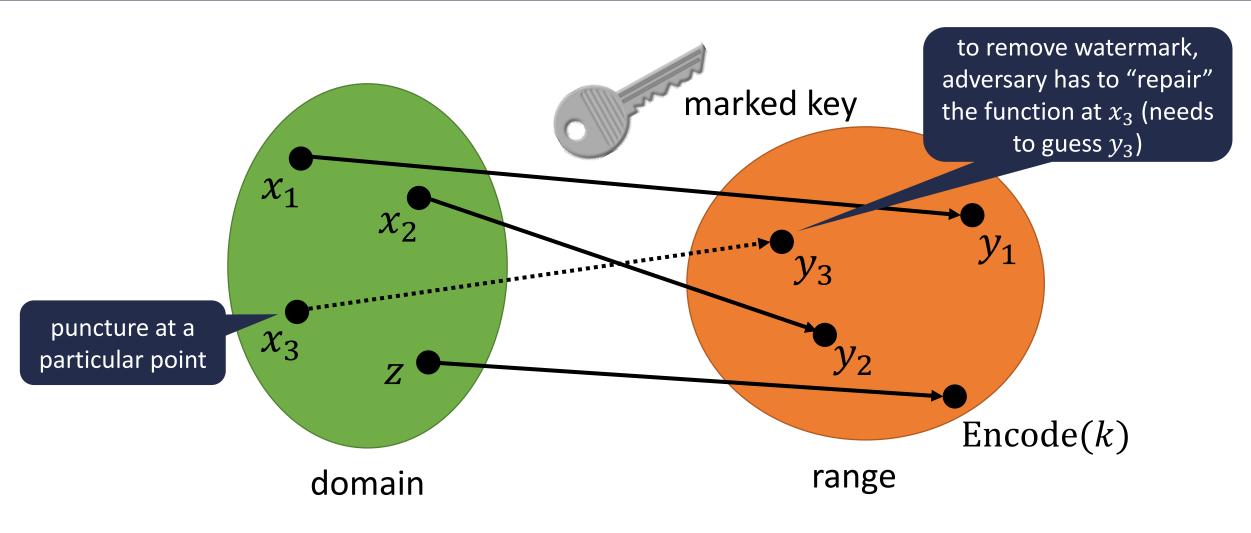
Advantage: no longer require private puncturing (can base on <u>weaker</u> assumptions)

#### **Extraction to Watermarking**



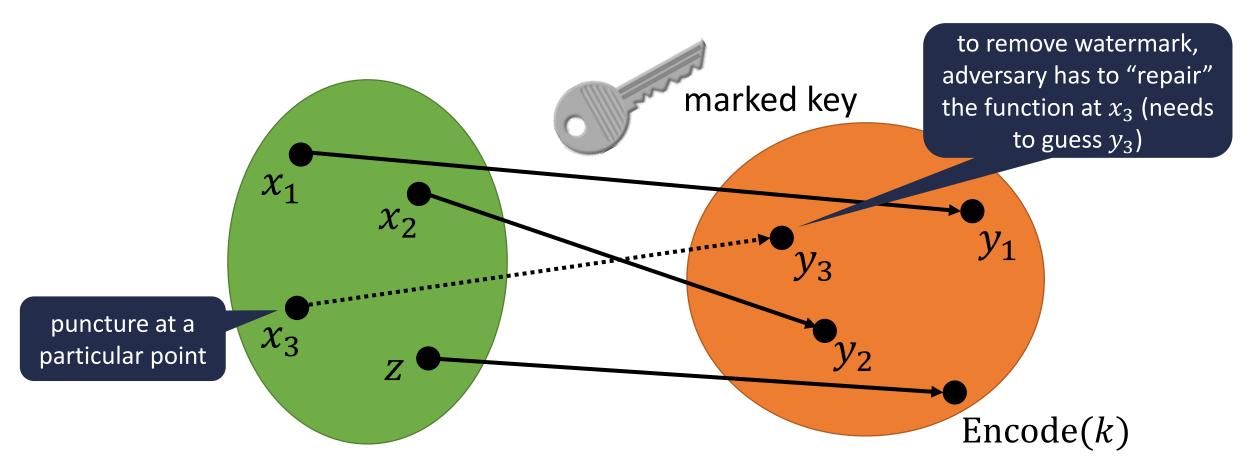
**Real PRF key** 

### **Extraction to Watermarking**



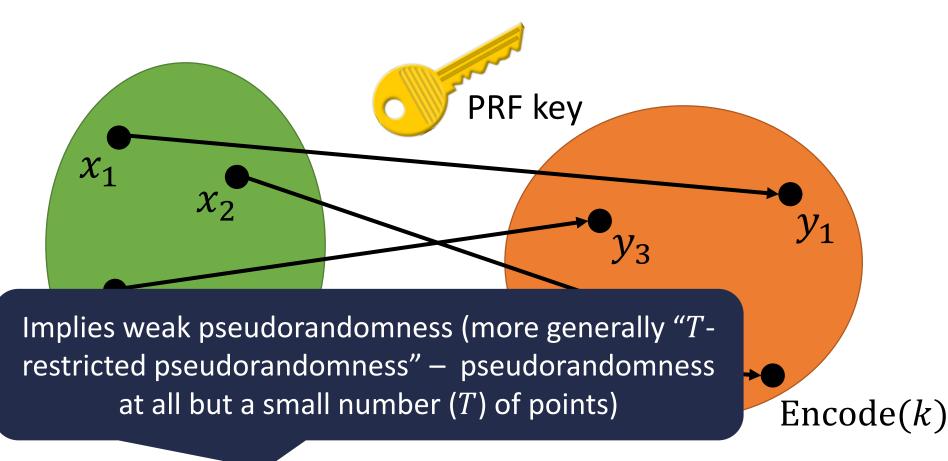
#### **Marked Key**

#### **Extraction to Watermarking**



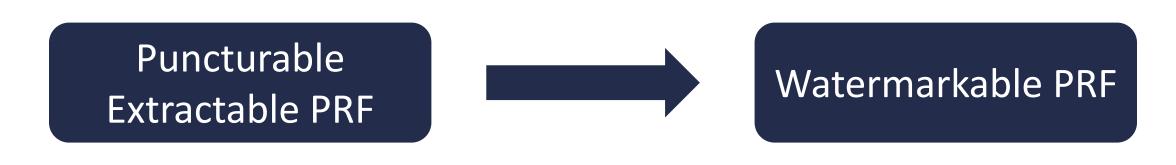
**Preventing verifier rejection:** Queries on circuits that are far away from marked key will always reject, so binary search is no longer effective

#### **Security Against the Authority**



PRF keys are pseudorandom everywhere except at *z* (even given the extraction trapdoor)

# Summary

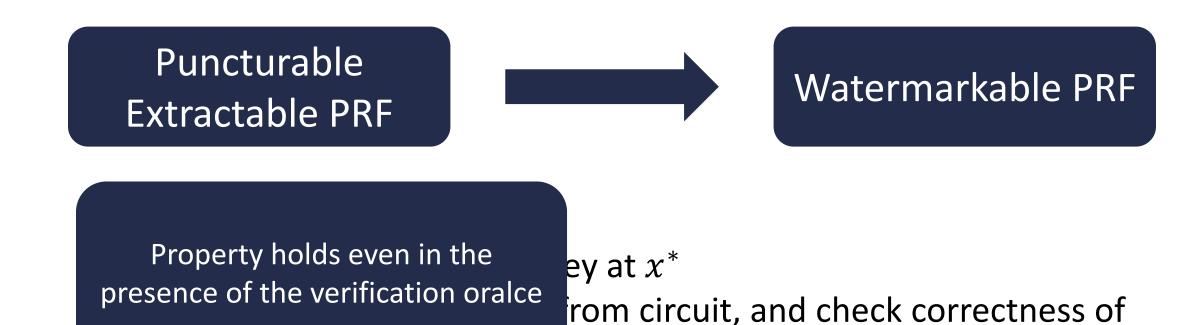


#### **High-level overview:**

- Marking: Puncture PRF key at  $x^*$
- Verification: Extract key from circuit, and check correctness of value at  $x^*$

**Unremovability:** Key-extraction succeeds if circuit if adversary's circuit is close to original PRF; removing the mark requires "patching" PRF at punctured point

#### Summary



**Unremovability:** Key-extraction succeeds if circuit if adversary's circuit is close to original PRF; removing the mark requires "patching" PRF at punctured point

Structure of lattice PRFs [BV15]:

PRF on  $\ell$ -bit inputs (e.g., domain  $\{0,1\}^{\ell}$ )

 $A_1, \dots, A_\ell \in \mathbb{Z}_q^{n imes m}$  public matrices (one for each bit of input)

PRF secret key:  $s \in \mathbb{Z}_q^n$  (LWE secret)

 $(A, s^T A + e^T) \approx_c (A, u)$  where  $A \leftarrow \mathbb{Z}_q^{n \times m}, s \leftarrow \mathbb{Z}_q^n, e \leftarrow \chi^m, u \leftarrow \mathbb{Z}_q^m$ 

Structure of lattice PRFs [BV15]:

PRF on  $\ell$ -bit inputs (e.g., domain  $\{0,1\}^{\ell}$ )

 $A_1, \dots, A_\ell \in \mathbb{Z}_q^{n imes m}$  public matrices (one for each bit of input)

PRF secret key:  $s \in \mathbb{Z}_q^n$  (LWE secret)

PRF evaluation at input x: PRF $(s, x) \coloneqq [s^T A_x]_p$ 

 $A_x$ : matrix derived from  $A_1, \dots, A_\ell, x$ 

**Goal:** embed a trapdoor at z such that evaluation at z allows key recovery

Lattice trapdoors [Ajt99, GPV08, AP09, MP12]: can sample random matrix  $D \in \mathbb{Z}_q^{n \times m}$ trapdoor td<sub>D</sub> such that LWE is easy with respect to D: given  $s^T D + e^T$  and td<sub>D</sub>, can recover LWE secret s

Idea: hide a lattice trapdoor in the public parameters

 $A_1, \dots, A_\ell \in \mathbb{Z}_q^{n imes m}$  public matrices (one for each bit of input)

PRF secret key:  $s \in \mathbb{Z}_q^n$  (LWE secret) PRF evaluation at input x: PRF $(s, x) \coloneqq [s^T A_x]_p$ 

Embed trapdoor at  $z \in \{0,1\}^{\ell}$ :

Compute  $A_z$  from  $A_1, \dots, A_\ell$ Let  $W = D - A_z$ 

Include *W* in the public parameters

 $A_1, \dots, A_\ell \in \mathbb{Z}_q^{n imes m}$  public matrices (one for each bit of input)

PRF secret key:  $s \in \mathbb{Z}_q^n$  (LWE secret) PRF evaluation at input x: PRF $(s, x) \coloneqq [s^T A_x]_p$ 

W hides  $A_z$  (and thus, z) since D is statistically close to uniform

Include  $\overline{W}$  in the public parameters

PRF evaluation at input x: PRF $(s, x) \coloneqq [s^T(A_x + W)]_p$ 

$$A_1, \ldots, A_\ell \in \mathbb{Z}_q^{n imes m}$$
 public matrices (one for each bit of input)

PRF secret key:  $s \in \mathbb{Z}_q^n$  (LWE secret) PRF evaluation at input x: PRF $(s, x) \coloneqq [s^T A_x]_p$ 

Embed trapdoor at  $z \in \{0,1\}^{\ell}$ :

Cd

Le

Ind

Value everywhere else is still pseudorandom Value at z is  $[s^T(A_z + W)]_p = [s^T D]_p,$ so can extract s using trapdoor td<sub>D</sub>

PRF evaluation at input x: PRF $(s, x) \coloneqq [s^T(A_x + W)]_p$ 

#### Summary



Puncturable extractable PRF can be built from LWE (with a nearly polynomial modulus-to-noise ratio)

Yields new watermarking scheme from LWE with security in the presence of verification oracle

**Extensions:** Message-embedding, mark-unforgeability [See paper...]

# **Open Problems**

Extractable PRFs from generic techniques?

More applications of extractable PRFs?

Publicly-verifiable watermarking scheme for PRFs?

#### Thank you!

http://eprint.iacr.org/2018/986