Watermarking PRFs from

Lattices via Extractable PRFs

Sam Kim and David J. Wu

Watermarking Programs

[NSS99, BGIRSVY01, HMWO7, YF11, Nis13, CHNVW16, BLW17, KW17, QWZ18, GKMWW19]

(block AES_KEY) {
j, rnds (key)
ml1281i “sched ((_m128i1i *) (key->rd _key));
blk (*blk, sched['])
(3 s -4 rnds 3) {
blk (*blk, sched[3j])
blk (*blk, sched[j])
& CRYPTO

Embed a “mark” within a
program

—)

Two main algorithms (simplified):
« Mark(C) — C': Takes a circuit C and outputs a marked circuit C’
« Verify(C') — {0,1}: Tests whether a circuit C’ is marked or not

If mark is removed, then
program is destroyed

Watermarking Programs

[NSS99, BGIRSVY01, HMWO7, YF11, Nis13, CHNVW16, BLW17, KW17, QWZ18, GKMWW19]

(block AES KEY) {
3, rnds (key)
m128i "sched ((_m128i ") (key->rd_key)); MR RE p Ay . o w
blk ("blk, sched]]) Fok b * e :'}‘v¥‘~ ¥
(3 > - rnds 3) { Y
blk (*blk, sched[3j]) !
;Iblk (*blk, sched[]]) 5 8o T SR T
) *
@ CrRYPTO
: : If mark is removed, then
Notion extend to setting '

where watermark program is destroyed

can be any strlng

. Mark(C) — C': Takes a circuit C and outputs a marked circuit C'
« Verify(C') — {0,1}: Tests whether a circuit C’ is marked or not

Watermarking Programs

[NSS99, BGIRSVY01, HMWO7, YF11, Nis13, CHNVW16, BLW17, KW17, QWZ18, GKMWW19]

(block AES KEY) { (block AES KEY) {
i, rnds (key) i, rnds (key)

m128i "sched ((_m128i ") (key->rd_key)); Mark ,AW-IZSi sched ((_m128i *) (key->rd_key));

blk (*blk, sched["]) blk (*blk, sched["])
(3 : § < rnds) £] . J < rnds 3) {
blk (*blk, sched[]]) blk (*blk, sched[3j])

blk (*blk, sched[j]) blk (*blk, sched[j])

@ CrYPTO

Functionality-preserving: On input a circuit C, the Mark
algorithm outputs a circuit C' where

C(x) =C'(x)
on almost all inputs x

Watermarking Programs

[NSS99, BGIRSVY01, HMWO7, YF11, Nis13, CHNVW16, BLW17, KW17, QWZ18, GKMWW19]

(block AES_KEY) { E
j, rnds (key)
ml1281i “sched ((_m128i1i *) (key->rd _key));)
blk (*blk 1)

22 T ' Mo b : ¥
' H -.' .,\
I W SR W KAAT T Thep ety
sched| %3k A BN T e
(3 e rnds 3) { 3 PR >
blk (*blk, sched[3j]) e N3 iehy cFg]
blk (*blk, sched[j]) 5 A T

Unremovability: Given a marked program C’, no efficient
adversary can construct a circuit C* where

* C*(x) =C'(x)onalmost all inputs x

* The circuit C* is unmarked: Verify(C*) = 0

Watermarking Programs

[NSS99, BGIRSVY01, HMWO7, YF11, Nis13, CHNVW16, BLW17, KW17, QWZ18, GKMWW19]

(block AES KEY) {
j, rnds (key)
ml1281i “sched ((_m128i1i *) (key->rd _key));
blk (*blk, sched['])
(3 > - rnds 3) {
blk (*blk, sched[j])

Adversary is very powerful: sees the code of the marked

program C' and has complete flexibility in crafting C*

Unremovability: Given a marked program C’, no efficient
adversary can construct a circuit C* where

* C*(x) =C'(x)onalmost all inputs x

* The circuit C* is unmarked: Verify(C*) = 0

Watermarking Programs

[NSS99, BGIRSVY01, HMWO7, YF11, Nis13, CHNVW16, BLW17, KW17, QWZ18, GKMWW19]

(block AES KEY) {
j, rnds (key)
ml1281i “sched ((_m128i1i *) (key->rd _key));
blk (*blk, sched['])
(3 s J < rnds) {
blk (*blk, sched[3j]) ¢
b1k (*blk, sched[3]) i 101
Learning the original
& CRYPTO . :
-- (unmarked) function gives a

way to remove the watermark

* Notion only achievable for functions that are not learnable
* Focus has been on cryptographic functions

Watermarking Cryptographic Programs

[NSS99, BGIRSVY01, HMWO7, YF11, Nis13, CHNVW16, BLW17, KW17, QWZ18, GKMWW19]

PRF(k,") PRF(k,)
| %j Mark | %j
(:/(J pseudorandom _ (:/f pseudorandom

function function
@ CrYPTO

* Focus of this work: watermarking PRFs [cHnvwie, BLwv17, kw17, qwz1s]

Watermarking Cryptographic Programs

[NSS99, BGIRSVY01, HMWO7, YF11, Nis13, CHNVW16, BLW17, KW17, QWZ18, GKMWW19]

PRF(k,")

%j Mark %j

(~/f pseudorandom (~/f pseudorandom

function function
@ CrYPTO

PRF(k,")

A function whose input-output

behavior is unpredictable (looks [yl I e A AN RUEV A QUL Yo\ z4E]
like a random function) — e.g., AES

Watermarking Cryptographic Programs

[NSS99, BGIRSVY01, HMWO7, YF11, Nis13, CHNVW16, BLW17, KW17, QWZ18, GKMWW19]

PRF(k,")

%j Mark %j

(~/f pseudorandom (~/f pseudorandom

function function
@ CrYPTO

PRF(k,")

Program has PRF key k hard-wired

inside it and on input x, outputs ng PRFs [cHNvwis, BLW17, kW17, QWz18]
PRF(k, x)

Watermarkable PRFs

[CHNVW16]: Watermark PRFs from iO + OWFs
Publicly verifiable

Can we watermark PRFs from standard assumptions?

[K\W17]: Watermark PRFs from standard assumptions (LWE)
Secretly verifiable

Watermarkable PRFs

Publicly Verifiable

O Watermarking
[CHNVW16]

Secretly Verifiable
Watermarking
from LWE [kw17]

A Naive Attempt at Public Verifiability

Just make the

verification key public!

Secretly Verifiable
Watermarking
from LWE [kw17]

Problem: Knowledge of the
verification key allows adversary
to trivially remove watermark

In fact: Even oracle access to the
verification key is sufficient to
break unremovability (“verifier
rejection” problem)

Between Public and Secret Verification

marked program

(j @ CRYPTO

C e
Verify(sk, C) C

challenger adversary

C*

Intermediate notion: Secret verification, but security
in the presence of a verification oracle

Between Public and Secret Verification

marked program

(j @ CrYPTO

C

challenger adversary

-

Conceptually similar to a “Minima

|”

stepping stone

CCA security notion towards public verifiability

Intermediate notion: Secret verification, but security
in the presence of a verification oracle

Watermarkable PRFs

PO

Secretly Verifiable “. 8 .i - ,

Watermarking
from CCA [awz18])
Rl >
/ Publicly Verifiable

Watermarking
[CHNVW16]

Secretly Verifiable
Watermarking
from LWE [kw17]

Watermarkable PRFs

Secretly Verifiable
Watermarking
from CCA [awz18]

/ Good: Achieves security in the presence of a
O verification oracle

Secretly Verifiable
Watermarking
from LWE [kw17]

Limitation: Knowledge of the verification key
breaks PRF security (even unmarked keys)

Security Against the Authority

[QWZ18]

PRF(k,")
— P '}--f"
PRF(k, x A pseudorandom

watermarking authority

After seeing single query (on any x), authority can
distinguish output of PRF from output of random function

Security Against the Authority

[QWZ18]

Implication: Knowledge of the
verification key completely breaks PRF security

(notion still seems far publicly-verifiable setting)

After seeing single query (on any x), authority can
distinguish output of PRF from output of random function

Don’t We Have to Trust the Authority Anyways?

PRF(k,")
— P '}--f"
PRF(k, x A pseudorandom

watermarking authority

Not necessarily: marking algorithm can be implemented
using a two-party computation, so authority never
needs to see any PRF keys in the clear

Don’t We Have to Trust the Authority Anyways?

PRF(k,")
— P '}--f"
PRF(k, x A pseudorandom

watermarking authority

This work: New watermarkable PRF that provides
security even against the watermarking authority

New secretly verifiable watermarking for PRF from LWE
* Unremovability holds in the presence of the verification oracle

* weak pseudorandomness even against authority
(T -restricted pseudorandomness)

* As secure as any other PRF family from LWE

* Relies on worst-case lattice problems with nearly-polynomial
(n®) approximation factors

New secretly verifiable wate
* Unremovability holds in Previous constructions (with message-

embedding) required private constrained
PRFs (which requires quasi-polynomial or

* weak pseudorandomne . Sl
sub-exponential approximation factors)

* As secure as any other PRF family from LWE

* Relies on worst-case lattice problems with nearly-polynomial
(n®) approximation factors

* New abstraction: extractable PRF

Starting Point: Puncturable PRF

[BW13, BGI14, KPTZ13]

punctured key k, -

Punctured key k,+ can be used to evaluate PRF on all points x # x~
(value at x™ is pseudorandom even given k,+)

Private puncturing: punctured key k.- also hides x~*
Programmability: program F(k,+, x*) = y*

From Puncturing to Watermarking

[BLW17, KW17]
A7y QRENUSY mmmp o
PRF key k punctured key k,.»

Marking algorithm:

1. Derive a special point (x*, y™) from input/output behavior of PRF
2. Define a marked circuit to be F(k,+,*)

Verification algorithm: Security: Punctured
1. Testif C(x*) = y* point x™ is hidden

Intuition: Binary Search Attack

programmed
key k..«

PRF Domain:

Intuition: Binary Search Attack

programmed) >
key k.
C(x) = Eval(k,+,x) | C(x) # Eval(k,*, x)
X Intuitively:
@ X
PRE Domain: if Verify(sk,C) = 1, thenx™ € S,

if Verify(sk,C) = 0, thenx* € S,

Intuition: Binary Search Attack

programmed) >
key k.
C(x) = Eval(k,+,x) C(x) # Eval(k,*, x)
X Intuitively:
®X S, o) *
PRE Domain: if Verify(sk,C) = 1, thenx™ € S,

if Verify(sk,C) = 0, thenx* € S,

Eventually, adversary recovers
special point x*

Intuition: Binary Search Attack

Very similar to a “verifier rejection” attack encountered

/ in settings like designated-verifier proof systems, CCA-
@ iz,

security, etc.

programmed | Solution: Make the set of “valid” circuits detectable

key k- (i.e., cannot change too many points and still preserve
mark)

C(x) = Eval(k,+,x) C(x) # Eval(k,*, x)

o Intuitively:
® Sl if Verify(sk,C) = 1,thenx* € S
PRF Domain: | | 2

if Verify(sk,C) = 0, thenx* € S,

Eventually, adversary recovers
special point x*

Our Notion: Extractable PRF

*51//] —) — *’\\\\///

PRF key k punctured key k,.»

Punctured key k..« can be used to evaluate PRF on all points x # x~

Private puncturing: punctured key k.- also hides x~*
Programmability: program F(k,+, x*) = y*
Extractability: point F(k,+, z) := Encode(k) encode original PRF key k

Our Notion: Extractable PRF

A
‘i// —) =d:

PRF key k punctured key k,.»

Punctured key k..« can be used to evaluate PRF on all points x # x~

Private puncturing: puncturciiEEECERILRICIsCllgte

ore ing sk
Programmability: program F (part of watermarking sk)

Extractability: point F(k,+, z) := Encode(k) encode original PRF key k

Our Notion: Extractable PRF

|
G \4 key

Special point embeds Encode(k)
information about the PRF key k

(specific to the PRF family, Can recover k from the encoding

using trapdoor information

unknown to the key-holder)

Extraction to Watermarking

Marking algorithm:
1. Derive a special point (x*, y*) from input/output behavior of PRF
2. Define a marked circuit to be F(k,+,")

Verification algorithm: Adversary can rule out only a
1. Testif C(x™) =y~ small fraction of domain

2. Extract key k and test if C(-) = F(k,")
(output unmarked if key extraction fails)

3. Accept only if both conditions satisfied

In fact: extractability enables a simpler marking procedure

Extraction to Watermarking

Marking algorithm:
1. Derive a special point (x*, y*) from input/output behavior of PRF
2. Define a marked circuit to be F(k,+,")

Verification algorithm:
1. Testif C(x*) =22

PRASUEIMNCN® |nstead of programming the value at x*, puncture
the PRF at x™: circuit is marked if C(x*) # F(k,x™)
3. Accept only if where k is the extracted key

In fact: extractability enables a simpler marking procedure

Extraction to Watermarking

Marking algorithm: To remove watermark, need
1. Puncture key at x* to obtain a key k- [RSRIEGUIEAEIVENG RGN

2. Define a marked key to be F(k,+,") the punctured point (i.e.,
guess a pseudorandom value)

Verification algorithm:
1. Extract key k and test if C(+) = F(k,")

(output unmarked if key extraction fails)
2. Output marked if C(x*) # F(k,x™) and unmarked otherwise

In fact: extractability enables a simpler marking procedure

Extraction to Watermarking

Marking algorithm: To remove watermark, need
1. Puncture key at x* to obtain a key k- [RSRIEGUIEAEIVENG RGN
2. Define a marked key to be F(k,+,") the punctured point (i.e.,

guess a pseudorandom value)

Verification algorithm:
1. Extract key k and test if C(+) = F(k,")
(output unmarked if key extraction fails)
2. Output marked if C(x*) # F(k,x™) and unmarked otherwise

Advantage: no longer require private puncturing
(can base on weaker assumptions)

Extraction to Watermarking

{ﬁ§§¢:::key

Encode(k)

domain range

Real PRF key

Extraction to Watermarking

to remove watermark,
adversary has to “repair”
Mﬂa rked key the function at x5 (needs
@ to guess y;)

puncture at a
particular point

Encode(k)

domain range

Marked Key

Extraction to Watermarking

to remove watermark,

adversary has to “repair”
marked key the function at x5 (needs
to guess y3)

puncture at a
particular point

Encode(k)

Preventing verifier rejection: Queries on circuits that are far away from
marked key will always reject, so binary search is no longer effective

Security Against the Authority

Implies weak pseudorandomness (more generally “T-
restricted pseudorandomness” — pseudorandomness
at all but a small number (T') of points) Encode(k)

PRF keys are pseudorandom everywhere
except at z (even given the extraction trapdoor)

Summary

Puncturable

Extractable PRF Watermarkable PRF

High-level overview:
* Marking: Puncture PRF key at x™
* Verification: Extract key from circuit, and check correctness of
value at x”*

Unremovability: Key-extraction succeeds if circuit if adversary’s
circuit is close to original PRF; removing the mark requires
“patching” PRF at punctured point

Summary

Puncturable

Extractable PRF Watermarkable PRF

Property holds even in the oy at x*

rom circuit, and check correctness of

presence of the verification oralce

Unremovability: Key-extraction succeeds if circuit if adversary’s
circuit is close to original PRF; removing the mark requires
“patching” PRF at punctured point

Constructing Extractable PRFs

Structure of lattice PRFs [Bv15]:

PRF on #¢-bit inputs (e.g., domain {0,1}?)
A ..., A E ngm public matrices (one for each bit of input)

PRF secret key: s € Zg (LWE secret)

(4,s’A+e!) =, (A,u) where

nxm n m m
ALy " S — Ly, €< x",u< 1L

Constructing Extractable PRFs

Structure of lattice PRFs [Bv15]:

PRF on #¢-bit inputs (e.g., domain {0,1}?)
A ..., A E ngm public matrices (one for each bit of input)

PRF secret key: s € Zg (LWE secret)

PRF evaluation at input x: PRF(s, x) = |s" A1,

A,.: matrix derived from A4, ..., 4,, x

Constructing Extractable PRFs

Goal: embed a trapdoor at z such that evaluation at z allows key recovery

Lattice trapdoors [Ajt99, GPV0S, AP09, MP12]: can sample
random matrix D € Zg™™
trapdoor tdp

such that LWE is easy with respect to D:
given s'D + e’ and tdp, can recover LWE secret s

Idea: hide a lattice trapdoor in the public parameters

Constructing Extractable PRFs

A, .. A, € MM public matrices (one for each bit of input)
1 4 q

PRF secret key: s € Zg (LWE secret)
PRF evaluation at input x: PRF(s, x) = |s" A1,

Embed trapdoor at z € {0,1}*:

Compute 4, from A4, ..., A,
letW =D — A,

Include W in the public parameters

Constructing Extractable PRFs

A ..., A E Zg‘xm public matrices (one for each bit of input)

PRF secret key: s € Zg (LWE secret)
PRF evaluation at input x: PRF(s, x) = |s" A1,

W hides A, (and thus, z) since

D is statistically close to uniform

Include W in the public parameters

PRF evaluation at input x: PRF(s, x) = |s" (4, + W)],

Constructing Extractable PRFs

Ay, ... A, € ZHM public matrices (one for each bit of input)
1 4 q

PRF secret key: s € Zg (LWE secret)
PRF evaluation at input x: PRF(s, x) = |s" A1,

Embed trapdoor at z € {0,1}*:

Value at z is
Is" (4, + W), = |s" D],
so can extract s using trapdoor tdp

Value everywhere else is still

pseudorandom

PRF evaluation at input x: PRF(s, x) = |s" (4, + W)],

Summary

Puncturable ‘
Extractable PR Watermarkable PRF

Puncturable extractable PRF can be built from LWE
(with a nearly polynomial modulus-to-noise ratio)

Yields new watermarking scheme from LWE with
security in the presence of verification oracle

Extensions: Message-embedding, mark-unforgeability | see paper...]

Open Problems

Extractable PRFs from generic techniques?
More applications of extractable PRFs?

Publicly-verifiable watermarking scheme for PRFs?

Thank you!
http://eprint.iacr.org/2018/986

