
Watermarking PRFs from
Lattices via Extractable PRFs

Sam Kim and David J. Wu

Watermarking Programs
[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17, KW17, QWZ18, GKMWW19]

CRYPTO

Embed a “mark” within a
program

If mark is removed, then
program is destroyed

Two main algorithms (simplified):
• Mark 𝐶 → 𝐶′: Takes a circuit 𝐶 and outputs a marked circuit 𝐶′

• Verify 𝐶′ → 0,1 : Tests whether a circuit 𝐶′ is marked or not

Watermarking Programs
[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17, KW17, QWZ18, GKMWW19]

CRYPTO

Embed a “mark” within a
program

If mark is removed, then
program is destroyed

Two main algorithms (simplified):
• Mark 𝐶 → 𝐶′: Takes a circuit 𝐶 and outputs a marked circuit 𝐶′

• Verify 𝐶′ → 0,1 : Tests whether a circuit 𝐶′ is marked or not

Notion extend to setting
where watermark
can be any string

Watermarking Programs

CRYPTO

Functionality-preserving: On input a circuit 𝐶, the Mark
algorithm outputs a circuit 𝐶′ where

𝐶 𝑥 = 𝐶′(𝑥)
on almost all inputs 𝑥

Mark

[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17, KW17, QWZ18, GKMWW19]

Watermarking Programs

CRYPTO

Unremovability: Given a marked program 𝐶′, no efficient
adversary can construct a circuit 𝐶∗ where

• 𝐶∗ 𝑥 = 𝐶′(𝑥) on almost all inputs 𝑥
• The circuit 𝐶∗ is unmarked: Verify 𝐶∗ = 0

[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17, KW17, QWZ18, GKMWW19]

Watermarking Programs

CRYPTO

Unremovability: Given a marked program 𝐶′, no efficient
adversary can construct a circuit 𝐶∗ where

• 𝐶∗ 𝑥 = 𝐶′(𝑥) on almost all inputs 𝑥
• The circuit 𝐶∗ is unmarked: Verify 𝐶∗ = 0

[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17, KW17, QWZ18, GKMWW19]

Adversary is very powerful: sees the code of the marked
program 𝐶′ and has complete flexibility in crafting 𝐶∗

Watermarking Programs

CRYPTO

• Notion only achievable for functions that are not learnable
• Focus has been on cryptographic functions

Learning the original
(unmarked) function gives a

way to remove the watermark

[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17, KW17, QWZ18, GKMWW19]

pseudorandom
function

PRF(𝑘,⋅)

pseudorandom
function

PRF(𝑘,⋅)

Watermarking Cryptographic Programs

CRYPTO

Mark

• Focus of this work: watermarking PRFs [CHNVW16, BLW17, KW17, QWZ18]

[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17, KW17, QWZ18, GKMWW19]

pseudorandom
function

PRF(𝑘,⋅)

pseudorandom
function

PRF(𝑘,⋅)

Watermarking Cryptographic Programs

CRYPTO

Mark

• Focus of this work: watermarking PRFs [CHNVW16, BLW17, KW17, QWZ18]

A function whose input-output
behavior is unpredictable (looks

like a random function) – e.g., AES

[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17, KW17, QWZ18, GKMWW19]

• Focus of this work: watermarking PRFs [CHNVW16, BLW17, KW17, QWZ18]

pseudorandom
function

PRF(𝑘,⋅)

pseudorandom
function

PRF(𝑘,⋅)

Watermarking Cryptographic Programs

CRYPTO

Mark

Program has PRF key 𝑘 hard-wired
inside it and on input 𝑥, outputs

PRF(𝑘, 𝑥)

[NSS99, BGIRSVY01, HMW07, YF11, Nis13, CHNVW16, BLW17, KW17, QWZ18, GKMWW19]

Watermarkable PRFs

[CHNVW16]: Watermark PRFs from iO + OWFs
Publicly verifiable

Can we watermark PRFs from standard assumptions?

[KW17]: Watermark PRFs from standard assumptions (LWE)
Secretly verifiable

Watermarkable PRFs

Publicly Verifiable
Watermarking

[CHNVW16]

Secretly Verifiable
Watermarking
from LWE [KW17]

A Naïve Attempt at Public Verifiability

Secretly Verifiable
Watermarking
from LWE [KW17]

Just make the
verification key public!

Problem: Knowledge of the
verification key allows adversary
to trivially remove watermark

In fact: Even oracle access to the
verification key is sufficient to
break unremovability (“verifier
rejection” problem)

Between Public and Secret Verification

Intermediate notion: Secret verification, but security
in the presence of a verification oracle

challenger adversary
CRYPTO

marked program

𝐶

Verify(sk, 𝐶)

𝐶∗

Between Public and Secret Verification

challenger adversary
CRYPTO

marked program

𝐶

Verify(sk, 𝐶)

𝐶∗

Conceptually similar to a
CCA security notion

“Minimal” stepping stone
towards public verifiability

Intermediate notion: Secret verification, but security
in the presence of a verification oracle

Watermarkable PRFs

Publicly Verifiable
Watermarking

[CHNVW16]

Secretly Verifiable
Watermarking
from LWE [KW17]

Secretly Verifiable
Watermarking

from CCA [QWZ18]

Watermarkable PRFs

Publicly Verifiable
Watermarking

[CHNVW16]

Secretly Verifiable
Watermarking
from LWE [KW17]

Secretly Verifiable
Watermarking

from CCA [QWZ18]

Good: Achieves security in the presence of a
verification oracle

Limitation: Knowledge of the verification key
breaks PRF security (even unmarked keys)

Security Against the Authority
[QWZ18]

pseudorandom
function

PRF(𝑘,⋅)
𝑥

PRF(𝑘, 𝑥)

After seeing single query (on any 𝑥), authority can
distinguish output of PRF from output of random function

sk

watermarking authority

Security Against the Authority
[QWZ18]

pseudorandom
function

PRF(𝑘,⋅)
𝑥

PRF(𝑘, 𝑥)

After seeing single query (on any 𝑥), authority can
distinguish output of PRF from output of random function

sk

watermarking authority

Implication: Knowledge of the
verification key completely breaks PRF security

(notion still seems far publicly-verifiable setting)

Don’t We Have to Trust the Authority Anyways?

pseudorandom
function

PRF(𝑘,⋅)
𝑥

PRF(𝑘, 𝑥)

sk

watermarking authority

Not necessarily: marking algorithm can be implemented
using a two-party computation, so authority never

needs to see any PRF keys in the clear

Don’t We Have to Trust the Authority Anyways?

pseudorandom
function

PRF(𝑘,⋅)
𝑥

PRF(𝑘, 𝑥)

sk

watermarking authority

This work: New watermarkable PRF that provides
security even against the watermarking authority

Our Results

New secretly verifiable watermarking for PRF from LWE

• Unremovability holds in the presence of the verification oracle

• weak pseudorandomness even against authority

(𝑇-restricted pseudorandomness)

• As secure as any other PRF family from LWE

• Relies on worst-case lattice problems with nearly-polynomial
(𝑛𝜔 1) approximation factors

Our Results

New secretly verifiable watermarking for PRF from LWE

• Unremovability holds in the presence of the verification oracle

• weak pseudorandomness even against authority

(𝑇-restricted pseudorandomness)

• As secure as any other PRF family from LWE

• Relies on worst-case lattice problems with nearly-polynomial
(𝑛𝜔 1) approximation factors

Previous constructions (with message-
embedding) required private constrained
PRFs (which requires quasi-polynomial or
sub-exponential approximation factors)

• New abstraction: extractable PRF

Starting Point: Puncturable PRF

Punctured key 𝑘𝑥∗ can be used to evaluate PRF on all points 𝑥 ≠ 𝑥∗

(value at 𝑥∗ is pseudorandom even given 𝑘𝑥∗)

Private puncturing: punctured key 𝑘𝑥∗ also hides 𝑥∗

Programmability: program 𝐹 𝑘𝑥∗ , 𝑥
∗ ≔ 𝑦∗

[BW13, BGI14, KPTZ13]

Puncture𝑥⋆

PRF key 𝑘 punctured key 𝑘𝑥∗

From Puncturing to Watermarking
[BLW17, KW17]

Marking algorithm:

1. Derive a special point (𝑥∗, 𝑦∗) from input/output behavior of PRF

2. Define a marked circuit to be 𝐹(𝑘𝑥∗ ,∙)

Verification algorithm:

1. Test if 𝐶 𝑥∗ = 𝑦∗

Puncture𝑥∗

PRF key 𝑘 punctured key 𝑘𝑥∗

Security: Punctured
point 𝑥∗ is hidden

Intuition: Binary Search Attack

Verify vk,⋅⋮
programmed

key 𝑘𝑥∗

PRF Domain:

𝑥∗

Intuition: Binary Search Attack

Verify sk,⋅⋮

𝑥∗

PRF Domain:

programmed
key 𝑘𝑥∗

𝐶 𝑥 = Eval(𝑘𝑥∗ , 𝑥) 𝐶 𝑥 ≠ Eval(𝑘𝑥∗ , 𝑥)

𝑆1 𝑆2

Intuitively:

if Verify sk, 𝐶 = 1, then 𝑥∗ ∉ 𝑆2

if Verify sk, 𝐶 = 0, then 𝑥∗ ∈ 𝑆2

Intuition: Binary Search Attack

Verify sk,⋅⋮

𝑥∗

PRF Domain:

programmed
key 𝑘𝑥∗

𝐶 𝑥 = Eval(𝑘𝑥∗ , 𝑥) 𝐶 𝑥 ≠ Eval(𝑘𝑥∗ , 𝑥)

𝑆1

𝑆2

Intuitively:

if Verify sk, 𝐶 = 1, then 𝑥∗ ∉ 𝑆2

if Verify sk, 𝐶 = 0, then 𝑥∗ ∈ 𝑆2

Eventually, adversary recovers
special point 𝑥∗

Intuition: Binary Search Attack

Verify sk,⋅⋮

𝑥∗

PRF Domain:

programmed
key 𝑘𝑥∗

𝐶 𝑥 = Eval(𝑘𝑥∗ , 𝑥) 𝐶 𝑥 ≠ Eval(𝑘𝑥∗ , 𝑥)

𝑆1

𝑆2

Intuitively:

if Verify sk, 𝐶 = 1, then 𝑥∗ ∉ 𝑆2

if Verify sk, 𝐶 = 0, then 𝑥∗ ∈ 𝑆2

Eventually, adversary recovers
special point 𝑥∗

Very similar to a “verifier rejection” attack encountered
in settings like designated-verifier proof systems, CCA-
security, etc.

Solution: Make the set of “valid” circuits detectable
(i.e., cannot change too many points and still preserve
mark)

Our Notion: Extractable PRF

Punctured key 𝑘𝑥∗ can be used to evaluate PRF on all points 𝑥 ≠ 𝑥∗

Private puncturing: punctured key 𝑘𝑥∗ also hides 𝑥∗

Programmability: program 𝐹 𝑘𝑥∗ , 𝑥
∗ ≔ 𝑦∗

Extractability: point 𝐹 𝑘𝑥∗ , 𝑧 ≔ Encode(𝑘) encode original PRF key 𝑘

Puncture𝑥∗

PRF key 𝑘 punctured key 𝑘𝑥∗

Our Notion: Extractable PRF

Punctured key 𝑘𝑥∗ can be used to evaluate PRF on all points 𝑥 ≠ 𝑥∗

Private puncturing: punctured key 𝑘𝑥∗ also hides 𝑥∗

Programmability: program 𝐹 𝑘𝑥∗ , 𝑥
∗ : = 𝑦∗

Extractability: point 𝐹 𝑘𝑥∗ , 𝑧 ≔ Encode(𝑘) encode original PRF key 𝑘

Decode with trapdoor td
(part of watermarking sk)

Puncture𝑥∗

PRF key 𝑘 punctured key 𝑘𝑥∗

𝑦3
𝑦1

𝑦2

𝑥1
𝑥2

𝑥3

domain range

PRF key

Our Notion: Extractable PRF

𝑧

Encode(𝑘)Special point embeds
information about the PRF key 𝑘

(specific to the PRF family,
unknown to the key-holder)

Can recover 𝑘 from the encoding
using trapdoor information

Extraction to Watermarking

Marking algorithm:

1. Derive a special point (𝑥∗, 𝑦∗) from input/output behavior of PRF

2. Define a marked circuit to be 𝐹(𝑘𝑥∗ ,⋅)

Verification algorithm:

1. Test if 𝐶 𝑥∗ = 𝑦∗

2. Extract key 𝑘 and test if 𝐶 ⋅ ≈ 𝐹(𝑘,⋅)

(output unmarked if key extraction fails)

3. Accept only if both conditions satisfied

Adversary can rule out only a
small fraction of domain

In fact: extractability enables a simpler marking procedure

Extraction to Watermarking

Marking algorithm:

1. Derive a special point (𝑥∗, 𝑦∗) from input/output behavior of PRF

2. Define a marked circuit to be 𝐹(𝑘𝑥∗ ,⋅)

Verification algorithm:

1. Test if 𝐶 𝑥∗ = 𝑦∗

2. Extract key 𝑘 and test if 𝐶 ⋅ ≈ 𝐹(𝑘,⋅)

(output unmarked if key extraction fails)

3. Accept only if both conditions satisfied

In fact: extractability enables a simpler marking procedure

Instead of programming the value at 𝑥∗, puncture
the PRF at 𝑥∗: circuit is marked if 𝐶 𝑥∗ ≠ 𝐹(𝑘, 𝑥∗)

where 𝑘 is the extracted key

Extraction to Watermarking

Marking algorithm:

1. Puncture key at 𝑥∗ to obtain a key 𝑘𝑥∗

2. Define a marked key to be 𝐹 𝑘𝑥∗ ,⋅

Verification algorithm:

1. Extract key 𝑘 and test if 𝐶 ⋅ ≈ 𝐹(𝑘,⋅)

(output unmarked if key extraction fails)

2. Output marked if 𝐶 𝑥∗ ≠ 𝐹(𝑘, 𝑥∗) and unmarked otherwise

In fact: extractability enables a simpler marking procedure

To remove watermark, need
to fix the value of the PRF at

the punctured point (i.e.,
guess a pseudorandom value)

Extraction to Watermarking

Marking algorithm:

1. Puncture key at 𝑥∗ to obtain a key 𝑘𝑥∗

2. Define a marked key to be 𝐹 𝑘𝑥∗ ,⋅

Verification algorithm:

1. Extract key 𝑘 and test if 𝐶 ⋅ ≈ 𝐹(𝑘,⋅)

(output unmarked if key extraction fails)

2. Output marked if 𝐶 𝑥∗ ≠ 𝐹(𝑘, 𝑥∗) and unmarked otherwise

To remove watermark, need
to fix the value of the PRF at

the punctured point (i.e.,
guess a pseudorandom value)

Advantage: no longer require private puncturing
(can base on weaker assumptions)

𝑦3
𝑦1

𝑦2

𝑥1
𝑥2

𝑥3

domain range

PRF key

Extraction to Watermarking

Real PRF key

Encode(𝑘)

𝑧

𝑦3
𝑦1

𝑦2

𝑥1
𝑥2

𝑥3

domain range

marked key

Extraction to Watermarking

Marked Key

Encode(𝑘)

𝑧
puncture at a

particular point

to remove watermark,
adversary has to “repair”
the function at 𝑥3 (needs

to guess 𝑦3)

𝑦3
𝑦1

𝑦2

𝑥1
𝑥2

𝑥3

marked key

Extraction to Watermarking

Encode(𝑘)

𝑧
puncture at a

particular point

to remove watermark,
adversary has to “repair”
the function at 𝑥3 (needs

to guess 𝑦3)

Preventing verifier rejection: Queries on circuits that are far away from
marked key will always reject, so binary search is no longer effective

𝑦3
𝑦1

𝑦2

𝑥1
𝑥2

𝑥3

PRF key

Security Against the Authority

Encode(𝑘)

𝑧

PRF keys are pseudorandom everywhere
except at 𝑧 (even given the extraction trapdoor)

Implies weak pseudorandomness (more generally “𝑇-
restricted pseudorandomness” – pseudorandomness

at all but a small number (𝑇) of points)

Summary

Puncturable
Extractable PRF

Watermarkable PRF

High-level overview:
• Marking: Puncture PRF key at 𝑥∗

• Verification: Extract key from circuit, and check correctness of
value at 𝑥∗

Unremovability: Key-extraction succeeds if circuit if adversary’s
circuit is close to original PRF; removing the mark requires
“patching” PRF at punctured point

Summary

Puncturable
Extractable PRF

Watermarkable PRF

High-level overview:
• Marking: Puncture PRF key at 𝑥∗

• Verification: Extract key from circuit, and check correctness of
value at 𝑥∗

Unremovability: Key-extraction succeeds if circuit if adversary’s
circuit is close to original PRF; removing the mark requires
“patching” PRF at punctured point

Property holds even in the
presence of the verification oralce

Constructing Extractable PRFs

Structure of lattice PRFs [BV15]:

𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

PRF on ℓ-bit inputs (e.g., domain 0,1 ℓ)

public matrices (one for each bit of input)

PRF secret key: 𝒔 ∈ ℤ𝑞
𝑛 (LWE secret)

𝑨, 𝒔𝑇𝑨 + 𝒆𝑇 ≈𝑐 (𝑨, 𝒖) where

𝑨 ← ℤ𝑞
𝑛×𝑚, 𝒔 ← ℤ𝑞

𝑛, 𝒆 ← 𝜒𝑚, 𝒖 ← ℤ𝑞
𝑚

Constructing Extractable PRFs

Structure of lattice PRFs [BV15]:

𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

PRF on ℓ-bit inputs (e.g., domain 0,1 ℓ)

public matrices (one for each bit of input)

PRF secret key: 𝒔 ∈ ℤ𝑞
𝑛 (LWE secret)

PRF evaluation at input 𝑥: PRF 𝒔, 𝑥 ≔ 𝒔𝑇𝑨𝑥 𝑝

𝑨𝑥: matrix derived from 𝑨1, … , 𝑨ℓ, 𝑥

Constructing Extractable PRFs

Goal: embed a trapdoor at 𝑧 such that evaluation at 𝑧 allows key recovery

Lattice trapdoors [Ajt99, GPV08, AP09, MP12]: can sample
random matrix 𝑫 ∈ ℤ𝑞

𝑛×𝑚

trapdoor td𝑫
such that LWE is easy with respect to 𝑫:

given 𝒔𝑇𝑫+ 𝒆𝑇 and td𝑫, can recover LWE secret 𝒔

Idea: hide a lattice trapdoor in the public parameters

Constructing Extractable PRFs

𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚 public matrices (one for each bit of input)

PRF secret key: 𝒔 ∈ ℤ𝑞
𝑛 (LWE secret)

PRF evaluation at input 𝑥: PRF 𝒔, 𝑥 ≔ 𝒔𝑇𝑨𝑥 𝑝

Embed trapdoor at 𝑧 ∈ 0,1 ℓ:

Compute 𝑨𝑧 from 𝑨1, … , 𝑨ℓ

Let 𝑾 = 𝑫− 𝑨𝑧

Include 𝑾 in the public parameters

Constructing Extractable PRFs

𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚 public matrices (one for each bit of input)

PRF secret key: 𝒔 ∈ ℤ𝑞
𝑛 (LWE secret)

PRF evaluation at input 𝑥: PRF 𝒔, 𝑥 ≔ 𝒔𝑇𝑨𝑥 𝑝

Embed trapdoor at 𝑧 ∈ 0,1 ℓ:

Compute 𝑨𝑧 from 𝑨1, … , 𝑨ℓ

Let 𝑾 = 𝑫− 𝑨𝑧

Include 𝑾 in the public parameters

PRF evaluation at input 𝑥: PRF 𝒔, 𝑥 ≔ 𝒔𝑇 𝑨𝑥 +𝑾 𝑝

𝑾 hides 𝑨𝑧 (and thus, 𝑧) since
𝑫 is statistically close to uniform

Constructing Extractable PRFs

𝑨𝟏, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚 public matrices (one for each bit of input)

PRF secret key: 𝒔 ∈ ℤ𝑞
𝑛 (LWE secret)

PRF evaluation at input 𝑥: PRF 𝒔, 𝑥 ≔ 𝒔𝑇𝑨𝑥 𝑝

Embed trapdoor at 𝑧 ∈ 0,1 ℓ:

Compute 𝑨𝑧 from 𝑨1, … , 𝑨ℓ

Let 𝑾 = 𝑫− 𝑨𝑧

Include 𝑾 in the public parameters

PRF evaluation at input 𝑥: PRF 𝒔, 𝑥 ≔ 𝒔𝑇 𝑨𝑥 +𝑾 𝑝

Value at 𝑧 is
𝒔𝑇 𝑨𝒛 +𝑾 𝑝 = 𝒔𝑇𝑫 𝑝,

so can extract 𝒔 using trapdoor td𝑫

Value everywhere else is still
pseudorandom

Summary

Puncturable
Extractable PRF

Watermarkable PRF

Puncturable extractable PRF can be built from LWE
(with a nearly polynomial modulus-to-noise ratio)

Yields new watermarking scheme from LWE with
security in the presence of verification oracle

Extensions: Message-embedding, mark-unforgeability [See paper…]

Open Problems

Extractable PRFs from generic techniques?

More applications of extractable PRFs?

Publicly-verifiable watermarking scheme for PRFs?

Thank you!
http://eprint.iacr.org/2018/986

