1. Show NP-completeness for each of the following problems. Both are simple, direct reductions from one of the problems we have shown to be NP-complete in class.

(a) **Minimum set cover.** You are given a set S, a collection of subsets $S_1, \ldots, S_n \subseteq S$, and an integer k. Do there exist a set of k subsets $T \subseteq [n]$ such that

$$\bigcup_{i \in T} S_i = S?$$

Hint, encoded as ROT-13: *iregrk pbire*.

(b) **Subgraph Isomorphism.** You are given two graphs, G and H. Does $G = (V_G, E_G)$ contain a subgraph isomorphic to $H = (V_H, E_H)$? That is, is there an injection $f : V_H \to V_G$ such that for every $u, v \in V_H$, $(u, v) \in E_H$ if, and only if, $(f(u), f(v)) \in E_G$?

Hint, encoded as ROT-13: *znk pyvdhr be vaqrcraqrag frg*.

2. The problem **ALLOrNOTHINGSat** asks, given a 3CNF boolean formula, whether there is an assignment to the variables such that each clause either has three True literals or has three False literals.

Describe a polynomial time algorithm for **ALLOrNOTHINGSat**.