1. In class we discussed interval packing problems. Here we explore interval covers.

(a) You are given a set of \(n \) intervals \([s_i, f_i]\) and a range \([0, T]\). You would like to find a minimal set \(I \subseteq [n] \) of intervals whose union covers the range. That is, we say that \(I \) is a valid cover if, for all \(t \in [0, T] \), there exists an \(i \in I \) such that \(t \in [s_i, f_i] \). Give (and prove correctness for) a greedy algorithm to compute a valid cover with the smallest number of intervals, in linear time after sorting.

(b) (Optional) Now suppose that each interval also has a cost \(c_i \), and your goal is to find a valid cover \(I \) minimizing the total cost \(\sum_{i \in I} c_i \). Give a dynamic programming solution to this problem that takes \(O(n^2) \), or even \(O(n \log n) \), time.

2. There’s a Jupyter Notebook linked from the class webpage.