Problem Set 6

CS 331H
Due Tuesday, May 3

1. For a hash family H from [U] to [n], and a set of items S C [U], let
X;(#H, S) be the random variable denoting the load in the jth bin:

Xj =i € STh(i) = j}

as a distribution over h € H. Further, let f(#,S) denote the expected
max load in any bin:

f(H,S):= E maxX;

heH j€n]

(a) For any t > 1, and for any pairwise independent hash family H
and any set S with |S| = n, show that

Pr[X; > t] < O(1/#).
Hint: bound E[X7].
(b) Show that for a pairwise independent family H, that
f(H,S) = O0(Vn)

for any S with |S| = n.

(c) Show that there exists a pairwise independent hash family H and
set S with |S| = n such that

f(H,5) =6(Vn).

2. Give an algorithm that takes a function h : [U] — [n] and finds pairs
of inputs that collide. If h is perfectly random, your algorithm should
use O(1) space and O(y/n) expected time. Hint: Relate this problem
to the classic problem of finding a loop in a linked list.

3. The Python programming language uses hash tables for “dictionaries”
internally in many places. Until 2012, however, the hash function was

1

not randomized: keys that collided in one Python program would do
so for every other program. To avoid denial of service attacks, Python
implemented hash randomization—but there was an issue with the ini-
tial implementation. Also, in Python 2, hash randomization is still not
the default: one must enable it with the -R flag.

Find a 64-bit machine with both Python 2.7 and Python 3 (> 3.4); one
is available at 1linux.cs.utexas.edu.

(a) First, let’s look at the behavior of hash(“a”)—hash(“b”) over n =
2000 different initializations. If hash were pairwise independent
over the range (64-bit integers, on a 64-bit machine), how many
times should we see the same value appear?

(b) How many times do we see the same value appear, for three differ-
ent instantiations of Python: (I) no randomization (python2), (II)
Python 2’s hash randomization (python2 -R), and (III) Python
3’s hash randomization (python3)?

(¢) What might be going on here? Roughly how many “different”
hash functions does this suggest that each version has?

(d) The above suggests that Python 2’s hash randomization is bro-
ken, but does not yet demonstrate a practical issue. Let’s show
that large collision probabilities happen. Observe that the strings
“8177111679642921702” and “6826764379386829346” hash to the
same value in non-randomized Python 2.

Check how often those two keys hash to the same value under
python2 -R. What fraction of runs do they collide? Run it enough
times to estimate the fraction to within 20% multiplicative error,
with good probability.

How could an attacker use this behavior to denial of service attack
a website?

(e) (Optional) Using your algorithm from the previous problem, find
other inputs that collide under Python’s hash function.

4. Farmer John is conducting an experiment on how his cows play a vari-
ant of the repeated prisoners’ dilemma. This variant of the prisoners’
dilemma is a two player game, where each cow can choose whether to
defect (D) or cooperate (C). The outcome of the game is as follows:

Cow A | Cow B | Result for cow A | Result for cow B
C C 2 2
C D 1 3
D C 3 1
D D 1 1

In this repeated prisoners’ dilemma, cows A and B play the prison-
ers’ dilemma T times. If A gets results Ay,..., Ar and B gets results
By,...,Br over the T rounds, then Farmer John gives A a total of
Ay X Ay X --- x Ap dollars, and gives B a total of By X By X --+ X By
dollars.

Farmer John performs an experiment on his NV cows, where each pair of
cows plays a repeated prisoners’ dilemma. For each of T" rounds, each
cow chooses to either cooperate in all her N — 1 games, or to defect in
all her N — 1 games.

Given the transcript for each cow of whether they cooperated or de-
fected in each round, tell Farmer John the total amount he must pay
all the cows. Show how to do this in O(T(N + 27)) time.

