Problem Set 4

CS 331H

Due Thursday, April 6

- 1. Given a weighted, undirected graph, a source s, and a sink t, find the shortest path from s to t and back to s that uses each edge at most once. Aim for $O(m + n \log n)$ time. **Hint:** the idea is similar to the Ford-Fulkerson algorithm.
- 2. [Problem 372 of Brian Dean's book.] Given an undirected, unweighted graph, we would like to compute the subgraph of maximum edge density. The *edge density* of a subgraph is the number of edges divided by the number of vertices.

Consider the following construction. For a given "guess" λ , construct a dummy source s and sink t. Draw an edge from s to each graph node u of capacity m; one from each graph node u to t of capacity $m+2\lambda-d_u$, where d_u is the degree of u in the original graph; and give each edge (u, v) in the original graph capacity 1.

- (a) For a nonempty set S of vertices in the original graph, express the cost of cutting $S \cup \{s\}$ from the rest of the graph, in terms of the number of edges fully contained in S and the degrees in S.
- (b) Show that this value is less than mn if, and only if, the edge density of S is more than λ .
- (c) Show how a max-flow algorithm and binary search can narrow down on the maximum edge density of any subgraph. Show that after $O(\log n)$ steps of binary search, you can compute the maximum edge density exactly.
- (d) Show how to compute the set S^* of maximum edge density, not just its value.
- 3. Consider the following variant of interval scheduling. You have n intervals, each with a given integer start and end time $[s_i, t_i)$ and cost c_i , and would like to choose a subset S that minimizes the cost

$$\operatorname{cost}(S) = \sum_{i \in S} c_i$$

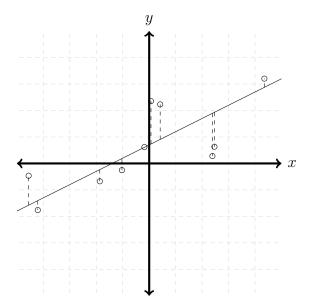


Figure 1: Illustration of regression. (The line wasn't actually found using regression, so it probably is not optimal.)

subject to the constraint that every integer time in [0, T) is covered by at least at least k different intervals in S.

Show how to reduce this problem to a minimum cost circulation problem. You may assume that T = O(n).

4. In regression, you are given a set of points (x_i, y_i) and would like to find a line y = mx + b such that the error is small by some measure. In ℓ_1 regression, one would like to minimize the ℓ_1 norm of the residuals:

$$\sum_{i=1}^{n} |(\alpha x_i + \beta) - y_i|.$$

The goal is to find α and β minimizing this quantity.

(a) Show how to express this problem as a linear program. Hint: the constraint $|a| \le b$ is equivalent to the two constraints $a \le b$ and $-a \le b$.

(b) Write your program in the primal form

$$\begin{array}{l} \text{Maximize } c^T x \\ \text{Subject to } Ax \leq b \end{array}$$

(c) Give the asymmetric dual form of your linear program.

$$\begin{array}{l} \text{Minimize } b^T y \\ \text{Subject to } A^T y = c \\ y \ge 0 \end{array}$$

- (d) Prove that, in the optimal regression, at least half the points lie on the line of above it, and at least half lie on the line or below it.
- (e) Give a direct interpretation of the dual LP, explaining what each expression/variable signifies and why the result is correct. Hint: the dual variables correspond to whether y_i is above or below the optimal regression line.

You may find it helpful to assume that no points lie on an optimal regression line. You may assume this, though I encourage you to figure out what happens in general.