Problem Set 11

CS 331H
Due Monday, May 6

1. Give an algorithm that takes a function h : [U] — [m] and finds pairs
of inputs that collide. If h is perfectly random, your algorithm should
use O(1) space and O(y/m) expected time. Hint: Relate this problem
to the classic problem of finding a loop in a linked list:

https://en.wikipedia.org/wiki/Cycle_detection

2. The Python programming language uses hash tables for “dictionaries”
internally in many places. Until 2012, however, the hash function was
not randomized: the same one was used every time, so keys that collided
in one Python program would do so for every other program.

int getRandornNumberO

return 4. // chosen by fair dice roll.
J/ Quaranteed to be random.

Figure 1: How Python’s hash function was chosen pre-2012. (Credit: XKCD)

To avoid denial of service attacks, Python implemented hash randomization—
but there was an issue with the initial implementation. Also, in Python

2, hash randomization is still not the default: one must enable it with

the -R flag.

Find a 64-bit machine with both Python 2.7 and Python 3 (> 3.4); one
is available at 1inux.cs.utexas.edu.

(a) First, let’s look at the behavior of hash(“a”) —hash(“b”) over n =
2000 different initializations. If hash were pairwise independent
over the range (64-bit integers, on a 64-bit machine), how many
different values should we see appear?

1


https://en.wikipedia.org/wiki/Cycle_detection

(b)

How many different values do appear, for three different instan-
tiations of Python: (I) no randomization (python2), (II) Python
2’s hash randomization (python2 -R), and (III) Python 3’s hash
randomization (python3)?

Hint: You may find this tiny shell script, which runs a command
2000 times, useful:

for i in “seq 1 20007 ; do
python2 -R -c 'print(hash("a")-hash("b"))'
done

What might be going on here? Roughly how many “different” hash
functions does this suggest that each version has?

The above suggests that Python 2’s hash randomization is bro-
ken, but does not yet demonstrate a practical issue. Let’s show
that large collision probabilities happen. Observe that the strings
“8177111679642921702" and “6826764379386829346" hash to the
same value in non-randomized Python 2.

Check how often those two keys hash to the same value under
python2 -R. What fraction of runs do they collide? To estimate
this, run it until you've seen it collide at least 10 times.

How might an attacker use this sort of behavior to denial of service
attack a website (i.e., to make the website slow)?

Using your algorithm from problem 1, find two other strings that
collide under Python 2’s non-randomized hash function.

Note: Your code may take about an hour to run. Try not to wait
until the last minute.



