## Problem Set 4

## CS 331H

## Due Monday, March 4

- 1. Work through the Jupyter notebook on the class website.
- 2. Consider a weighted, directed graph where all distances lie in [1,2). We would like to find an O(m) time algorithm for single-source shortest paths on this graph, where m is the number of edges.
  - (a) Consider a variant of Dijkstra's algorithm that does not always visit the unvisited node of smallest c(u), but instead arbitrarily picks one of the unvisited nodes of smallest  $\lfloor c(u) \rfloor$ . Show that such an algorithm still yields the correct answer.
  - (b) Now give a data structure that allows this Dijkstra variant to run in O(m) time. **Hint:** at any point during the execution, the set of  $\lfloor c(u) \rfloor$  for unvisited nodes u can only have a small number of options.
  - (c) Extend your result to O(mC) time and O(m) space for distances in [1,C) for any  $C \geq 1$ .