1. Consider the function \(\text{Factorial}(n) = n! \) for a nonnegative integer \(n \).

(a) Up to constant factors, many bits does it take to write \(n! \) down? You may use that \((\frac{n}{2})^{n/2} \leq n! \leq n^n \).

(b) Consider the standard factorial implementation: \(f(0) = 1 \), and \(f(n) = n \cdot f(n - 1) \) for \(n \geq 1 \). How many multiplications does it perform?

(c) How much time does the standard factorial implementation take, using standard multiplication? Note that standard multiplication takes \(\Theta(kl) \) time to multiply a \(k \)-bit number by an \(l \)-bit number.

(d) Can you use Karatsuba multiplication to speed this up? If so, by how much?

(e) Now consider the following recursive implementation \(g(n, m) \) of \(\frac{n!}{(n-m)!} \), for \(0 \leq m \leq n \):

\[
g(n, m) = \begin{cases}
1 & \text{if } n = 0 \text{ or } m = 0 \\
n & \text{if } m = 1 \\
g(n, \lfloor m/2 \rfloor) \cdot g(n - \lfloor m/2 \rfloor, \lceil m/2 \rceil) & \text{otherwise}
\end{cases}
\]

Show that \(g(n, m) \) correctly computes \(\frac{n!}{(n-m)!} \), and so \(n! = g(n, n) \).

(f) Show that \(g(n, m) \) is \(\Theta(m \log n) \) bits long.

(g) Let \(M(k) \) denote the time to multiply two \(k \)-bit integers. Let \(T(m) \) be the maximum over all \(n' \leq n \) of the time to compute \(g(n', m) \). Ignoring the floors and ceilings in \(g \), show that

\[
T(m) \leq 2T(m/2) + M(m \log n).
\]

(h) What does this recurrence solve to, for standard and for Karatsuba multiplication? When \(m = n \), so \(g(n, n) = n! \), how does this compare to the standard factorial implementation?

2. There’s a Jupyter Notebook linked from the class webpage. Run through it, then answer the questions at the end. Don’t wait till the last day to do this: setting up the required libraries may take some time.