Knapsack

You are robbing a store. The store has n items, each with a weight w_i pounds and a value v_i dollars.

You can carry up to C pounds. What is the maximum total value you can take?

$$f(k, w) := \text{maximum value using the first } k \text{ items & } \leq w \text{ total weight,}$$

$$f(0, w) = 0 \text{ if } w \geq 0$$

$$f(k, w) = \max \left(f(k-1, w) \quad \text{don't take item } k, \right.$$
$$\left. f(k-1, w-w_i) + v_i \quad \text{if } w \geq w_i, \quad \text{do take item } k \right)$$

$O(nC)$ space & time
Knapsack Variants

Above is "0-1" Knapsack.

- Infinite multiplicity: can take many copies of each item.

\[
f(k, w) = \max \left(f(k-1, w) \left\{ \begin{array}{l} \text{\text{do not take item } k} \\ f(k, w-w_i) + v_i \left\{ \begin{array}{l} \text{\text{do take item } k} \\ \text{\text{can still reuse it}} \end{array} \right. \end{array} \right. \right)
\]

\[
f(w) = \text{opt. for weight } w \text{ w/all } n \text{ items:}
\]

\[
f(w) = \max (0, \max_{i \in [n]} f(w-w_i)+v_i)
\]

- High multiplicity:
 each item usable \(\leq n_i \) times

Easy: \(O(nC \cdot \leq n_i) \)

Straightforward: \(O(nC \cdot \leq \log n_i) \)

Tricky: \(O(nC) \)
- Sliding Window:

For regular knapsack, get \(O(C)\) space, \(O(C)\) time.

Each column only depends on previous column

\[f(k \mod 2, w) \]

[Implementation trick: one column, scan down]

\(\Rightarrow O(nC) \) time, \(O(C) \) space

Issue: gives solution value but not solution
[would want the back pointers, which take \(nC \) space...]

Trick:

Instead of full \(nC \) back pointers, only store pointer to where the path was at column \(\frac{n}{2} \).
This can be kept in sliding window \(\Rightarrow O(C) \) space.
\[\text{This finds one point on optimal path in } O(nC) \text{ time, } O(C) \text{ space. Call it } w_{\frac{n}{2}}. \]

Then

\[\text{Path } (x_1, \ldots, n, C) = \text{Path } (x_1, \ldots, n, C - w_{\frac{n}{2}}) \]
\[+ \text{Path } (x_{\frac{n}{2} + 1}, \ldots, n, C - w_{\frac{n}{2}}) \]

\[T(n, C) = nC + T(\frac{n}{2}, w_{\frac{n}{2}}) + T(\frac{n}{2}, C - w_{\frac{n}{2}}) \]

Total area remaining is \(\frac{nC}{2} \)

\(\Rightarrow O(nC) \) time.

\[\text{Note: Knapsack is not polynomial time} \]

because \(C \) can be very large.

(Think: 64-bit integers \(\equiv n \cdot 2^{64} \))

Only fast if \(W_i \) small

Or: \(W_i \) small & \(V_i \) large, by

\[f(k, v) = \min \text{ weight for given value} \]

instead of \(f(k, v) = \max \text{ value for given weight} \)