Dynamic Programming I

Recursion:
To solve a problem for one input,
solve on other inputs
and combine results.

Benefits: often easy to find
Problem: usually exponential time.

How can we make it faster?

Memoization: whenever you compute
\(f(x) \) in some recursive call,
store the answer. Next time
you call \(f(x) \) just return it.

Memoization: time = \(\text{possible} \)
\(\# \text{ inputs} \), \(\text{time per call} \)

Recursion: time = \(\# \text{ paths from input} \)
\to base case
Can think of inputs as a DAG.
A \rightarrow B if B's recursion uses A.

Fibonacci:

Recursion time = # paths = F_n \approx 1.6^n
Memorization time = (# inputs) \times (time per input) = n \times n = n^2 \text{ bit operations}

Bottom-up DP: fill from left to right, looking at each edge.

Can either **pull** or **push** along edges.

Pull: compute a node's value when you visit it, based on previous values.

Push: when you visit a computed node, update future nodes that use it.

(In Fibonacci: add your value to theirs)

Generally equivalent. Sometimes only have easy access to out- or in-edges.
Longest increasing Subsequence:

Given n numbers A_1, \ldots, A_n
find increasing subsequence:

$s_1 < s_2 < \ldots < s_k$ (subsequence)

$A_{s_1} < A_{s_2} < \ldots < A_{s_k}$ (increasing)

or maximum length k.

will convert to longest path on DAG
$O(n^2)$ bottom-up approach:

Suppose you build your solution S_1, \ldots, S_n from left to right.

Walking a path: $(S_i, A_i) \to (S_j, A_j) \ldots$

on the DAG $(i, A_i) \to (j, A_j) \iff i < j \& A_i < A_j$

Start at $(-\infty, -\infty)$ and end at (∞, ∞)

Answer = longest path in DAG (-1)

because:

Any Path is an increasing sequence
any IS is a path

\Rightarrow longest path = longest IS
Memoized View

\[f_A(i) := \text{LIS ending at } A_i \]

\[= \max_{j < i, A_j < A_i} f_A(j) + 1 \]

Answer \(= \max_{i \in [n]} f_A(i) \)

OR (for poly time)

\(f(A) \leq \text{LIS of } A. \)

- let \(i = \arg \max A_i \)
- LIS either contains \(i \) or not

\(f(A) = \max \left(f(A \setminus A_i), \left(f(A_{i+1} \setminus A_{i-1}) + 1 \right) \right) \)

How many possible inputs?

\(\text{bar to LL} \Rightarrow n^2 \text{ options} + n \text{ time per option} \Rightarrow n^3 \)
$O(n \log n)$ Version

Given two possible starts, on $A_i, x \to A_m$:

S_i, S_i^1, S_i^j

S_i, S_i^1, S_i^j

When is one clearly superior?
When are they equivalent?

Answer: only will care about length & last value

$F_m(K) := \text{minimal last value of length- } K \text{ subsequence on } 1\ldots M$

$F_{m+1}(K) = \min (F_m(K), \begin{cases} A_{m+1} & \text{if } F_m(K-1) \leq A_{m+1} \\ A_m & \text{otherwise} \end{cases})$

$F_m: [z_1, z_2, \ldots, z_t, z_{t+1}, \ldots, z_k]$

$A_{m+1} \in (z_t, z_{t+1})$:

$F_{m+1}: [z_1, z_2, \ldots, z_t, A_{m+1}, z_{t+2}, \ldots, z_k]$

\Rightarrow update is $O(n \log n)$ binary search

$\Rightarrow O(n \log^2 n)$ time
Interval Scheduling:

Want to compute $\text{Sched}(I)$
where $I = \text{set of } (s_i, f_i, w_i)$ pairs
maximize $\sum_{i \in S} w_i$
for $S \subseteq I$ non-overlapping.

Naive recursion:
$\text{Sched}(I)$
Let $i = \text{first elt of } I$
Return \min of
not chosen: $\text{Sched}(I \setminus i)$
chosen: $\text{Sched}(I \setminus \hat{i} \setminus i$ or anything conflicting with $i \in S) + w_i$.

Problem: 2^n possible inputs.
Solution: If I sorted by f_i, then
only $n+1$ inputs ever happen:
(suffix of I sorted by s_i)

\Rightarrow memoized time is $n \cdot (\text{time per input})$

n^2 naively
n more carefully
$\text{Sched}($index in I, f or last chosen$)$
DAG: sort by \(f_i \).

1 \(\rightarrow \) 2 if \(f_i \leq S_j \), or weight \(w_i \).

\(S \rightarrow \) everything weight 0

everything \(\rightarrow \) + weight \(w_j \)

Answer = \text{max weight } S \rightarrow + \text{ path.}

Path \(S \rightarrow i_1 \rightarrow i_2 \rightarrow \ldots \rightarrow i_k \rightarrow + \)

- weight = 0 + w_1 + w_2 + \ldots + w_k
 = \text{total value of scheduling then}

- \(f_{i_1} \leq S_i \leq f_{i_2} \leq \ldots \leq f_{i_k} \)

\(\Rightarrow \) is valid schedule.

Many DP problems have this form:

Convert to a DAG
Find max-weight (or min-weight) \(S \rightarrow + \text{ path.} \)

Time = \# edges in DAG.
Stamps

values S_1, \ldots, S_n

with collection of value C, w/ fewest stamps

What is the DAG?

nodes = value

$x \rightarrow x + S_i \quad \forall i, x$, of weight 1

Answer = Shortest $0 \rightarrow C$ path.

Time = # edges = $O(N)$.