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1 Overview

In the last lecture, we talk about perfect hashing and mechanism of constructing minimal pefect
hash function (MPHF).

In this lecture, we introduce Bloom Filters with its characterized Approximate Membership Queries.
Then we describe a variant of bloom filter, the Counting Bloom Filter, as a deletion-support filter.
We also take an in-depth investigation to Count-Min Sketch algorithm, as well as Count Sketch
algorithm.

2 Hash Tables For Sets

As we know from the previous lecture, hash tables give mappings from a set of keys to a collection
of values. But can we use hash tables for sets? To implement sets, the operations we need include
insert/delete/build, membership query (is x in the set S) and cardinality query (|S]). The hash
table implementation for sets requires:

— O(1) per operation time.
— O(n) words of space (cannot be constant time).
Note that the word size w = logy u > logy n. If we use bit vector to implement sets, it is obvious

that u bits are required. But the hash-table implementation for sets only requires nlogy u bits.
The following question will lead us to prove this.

Question: How many bits are necessary to store a set of n items in [u|? Hint: how many sets of
size n are there?

log <u> > log(+)"
n n
U
= nlog(—
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=nlogu —nlogn
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which also implies that hash tables are the optimal implementation for sets, under deterministic
circumstances.



3 Bloom Filters

Now we start to discuss whether we can further improve the space cost by introducing randomness.

3.1 How does it work?

A Bloom filter is a space-efficient probabilistic data structure, which employ a bit vector to keep
track of the memebership of a set. The construction of a (regular) bloom filter with & different
independent hash functions is as follows: for each element = of a given set S, it is hashed into k
positions, and the bit vector of these corresponding positions flip to 1. Formally:

Vi, hi(x) =1, ifeeS
Vi, h;(x) keep unchanged. ifxgS

An arbitrary element y is said to be a member of the set S if and only if the responses of all hash
function are positive, that is,

Vie k], hilyy =1 = yeS

However, this membership rule can be faulty if all hashed positions of an element w ¢ S happen
to be flipped to 1s by members of S. Also note that removal of an element is not possible for a
regular bloom filter.
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Figure 1: A Simple Bloom Filter
Queries to bloom filters can be characterized as Approximate Membership Queries.
Definition 1 (Approximate Membership Queries). Given a query x and a set S, the approzimate

memebership query returns as follows:

If x € S, answer YES.
If ¢ ¢ S, usually answer NO.

With the undeterministic membership queries, there could exist some false positive cases: an queried
element x is reported to be in the set S but in reality it is not. Bloom Filters only employ O(n log %)
bits. If we set the false positive rate as f = 2%, it will cause approximately 10% improvement,
comparing to the deterministic hash-table implementation.



3.2 Examples

Below is a list of examples to show the usage of bloom filters in real practices.

Example 1 (Chrome Browser [BFChrome]). Google Chrome web browser used to use a bloom
filter to identify malicious URLs. Any URL was first checked against a local Bloom filter, and only
if the Bloom filter returned a positive result was a full check of the URL performed.

Example 2 (Databases). Bloom filters are used to reduce the disk lookups for non-existent rows
or columns. Keys of bloom filters are stored in PAM, full content is restored on disk.

Example 3 (BitCoins [BFBitcoins]). Bitcoins implementation uses Bloom filters to speed up wallet
synchronization, which updates a list of wallets and transaction IDs users care about.

3.3 Analysis

Now we turn to analytics over the false positive rate f.

Let n be the number of items, m be the number of buckets, k& be the number of hash functions, p
be the fraction of Os in an array, and f be the false positive rate. Then we have
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Although we derive E[p], p may vary. So the question is how much does it vary.
E# = P, with Pr=1—§
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With the E[p], we have the false positive rate to be

f=0-p"
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Now our objective is to choose k to minimize f.
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where z = %” Apply logarithm and then derivative to the above objective,

g(z) =zIn(1 — e ?)

gd(z)=In(l —e %)+ zm



Set ¢g'(z) = 0, we have z = In2, and then k& = 7* In 2. Thus,

1
p=em = 3 — bloom filter is balanced

m
n

f=(1-pF= (%)%‘“2 ~ (0.618)

For example, if m = 8n bits, then f = 0.02.

3.4 Counting Bloom Filters

Now we discuss one particular variant of the bloom filter, named Counting Bloom Filters. In a
Counting Bloom Filter, the removal of an element is plausible.

Two operations need to be explicitly specified: insert(z) and membership(z).

Algorithm 1 Counting Bloom Filters

1. procedure INSERT(x)
2: for i € [k] do
3: Yn,(z) increments by 1.

1: procedure MEMBERSHIP(z)

2 if Yhi(z) = 1, Vi € [k’] then

3: return YES.

4 else optimize m, k such that Pr(YES) = f is small.

What is the chance that the given counting bloom filter does not work? Let y; be the number of
items X, i € [k], s.t. hij(x) = j. Now we throw nk balls into m bins.

nk 1
Pr[yjzt]ﬁ(t>‘w
enk.t
<(-)

mit

eln?2
< (=)

If we employ 4 bits for each entry (set t = 16), then Prly; > t] = 1.4 x 10715,

In other words, Prlany y; overflows given 4 bits] < m x 1.4 x 10715,

4 Count-Min Sketch

Now we introduce a new sublinear space data structure — the Count-Min Sketch (CMS) [CGO05], for
dealing with the scenario that an given element could appear multiple times. So for CMS, we have
streams of insertions, deletions, and queries of how many times a element could have appeared. If
the number is always positive, it is called Turnstile Model. For example, in a music party, you will



see lots of people come in and leave, and you want to know what happens inside. But you do not
want to store every thing happened inside, you want to store it more efficiently.

One application of CMS might be you scanning over a corpus of a lib. There are a bunch of URLs
you have seen. There are huge number of URLs. You cannot remember all URLs you see. But you
want to estimate the query about how many times you saw the same URLs. What we can do is
to store a set of counting bloom filters. Because a URL can appear multiple times, how would you
estimate the query given the set of counting bloom filter?

We can take the minimal of all hashed counters to estimate the occurrence of a particular URL.
Specifically:

query(z) = min yp, (z)

Note that the previous analysis about the overflow of counting bloom filters does work.

Then there is a question of how accurate the query is? Let C(x) be the real count of an individual
item x. One simple bound of accuracy can be

Vi, Eyp, () — C(z)] = (el —mC(:c)) -k
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which tells us the average error for all single hashed places with regard to the real occurrence. So
we know that it is always overestimated.

For the total number of items ) C(x), we have (C(x) is non-negative)
> Cz)=1IClh

d_ 2

where, in general, Vz € R%, [|z]|1 = 2% |zil, |lzlla = S50, 22, |12]loe = maxX;ey,q | 2il-

Note that you do not even need m to be larger than n. If you have a huge number of items, you
can choose m to be very small (m can be millions for billions of URLSs).

Now we have bound of occurrence estimation for each individual 7 in expectation. However, what
we really need to concern is the query result. We know that

. k 1
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And now if I choose k = log %,

. k
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If C(z) is concentrated in a few elements, the t** largest is proportional to roughly t% with the
power law distribution. So if we choose m to be small, then you can estimate the top URLSs pretty
well.
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In fact, you can show a better result for CMS, which is rather than having your norm depend on
the 1-norm. There could be a few elements having all of occurrences. For example, Google.com has
a lot of people visiting it. The top few URLs have almost all the occurrences. Then probabaly for
a given URL, it might collide some of them in some of the time. But probably one of them is not
gonna collide, and probably most of them are going to collide. So you can actually get in terms of
[-1 norm but in terms of /-1 after dropping the top k£ elements. So given billions of URLSs, you can
drop the top ones and get [-1 norm for the residual URLs.
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5 Count Sketch

There is another sketch algorithm, which is called Count Sketch [CCF02]. It is basically like CMS,
except that when you do hashing, you also associate the sum with each hash function h. Formally,

yi= Y  C@si(x)
(4,x):hs(z)=j
Then the query can be defined as
query(z) = median S;(2)yp, ()

The error can be converted from [-1 norm to -2 norm.
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On top of that, suppose everything else is 0, then 3, ;) = Si(z)C(x). So we will have
query(z) ~ median (SZ($))2C($)

Then if there is nothing special going on, the query result would be C(x).
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