
CS 388R: Randomized Algorithms Fall 2014

Lecture 12 — Oct. 12, 2015

Prof. Eric Price Scribe: Qi Lei, Jiong Zhang

1 Overview

In the last lecture we discussed Perfect Hashing and Bloom Filters.

In this lecture we removed from hashing to routing, and we are going to use randomization to prove
routing.

2 Introduction

Suppose we have some network, and can communicate to each other.
For an arbitrary graph, what a reasonable model for a conversation to happen here?
Suppose we have

• synchronous messages, and

• each edge can transmit one message per time step

• Sending k messages over a link takes k time.

What is a proper problem to analyze?

• If one node wants to communicate with other node, one just broadcasts to everyone.

• What makes it hard is if multiple nodes want to send messages. However, if every node want
to communicate with one same node, the bottleneck would happen there so it’s not interesting
either.

That’s why we want to discuss permutation routing:

3 Permutation Routing

Each node i wants to send a message to Π(i) ∈ [N], Π(i) is a permutation.
Question: how long does it take to route all messages?
Ideally: oblivious routing:

1

n=0 n=1 n=2 n=3

Figure 1: ”hypercubes” for n = 0, 1, 2, 3

Path for i→ Π(i), P is independent of Π(−i)
Pi = (e1, · · · , el)

ej is an edge: l is length

3.1 Hypercube Graph

N = 2n: each vertex is indexed by n bit string.
edge i to j exists if i and j have exactly one bit difference.
Diameter n =⇒ ideally O(n) time to route.

E[distance between i and Π(i)] =
n

2

E[total number of messages passed] ≥ Nn

2

can hope for N messages/round
so hope for O(n) rounds.

Bit fixing routing(an naive thing to do):
fix bits left to right

Π(0101101) = 1101110

↓ 1101101

↓ 1101111

↓ 1101110

However, ∃ permutations such that bit fixing takes Ω(
√
N) time steps.

bn/2c︷︸︸︷
X 0

bn/2c︷ ︸︸ ︷
00 · · · 0

00 · · · 0 1 X

So after weight(X) times of bit fixing, where weight(X) =
∑n

i=1Xi, all the messages come to the

2

same position

bn/2c︷ ︸︸ ︷
00 · · · 0 0

bn/2c︷ ︸︸ ︷
00 · · · 0, next step for every node goes to

00 · · · 0 1 00 · · · 0, and final destination is

00 · · · 0 1 X︸︷︷︸
bn/2c

So for all X, the messengers will cross the same edge e from 00 · · · 0 to

bn/2c︷ ︸︸ ︷
00 · · · 0 1

bn/2c︷ ︸︸ ︷
00 · · · 0. There are

2bn/2c paths cross e, causing
√
N time of queueing.

Claim: for all deterministic oblivious algorithms, ∃Π s.t. it takes Ω(
√

N
n) times.

3.2 Randomized routing algorithm: O(n) time

Theorem 1. Part I: average case: bit fixing takes time O(n) with 1− 1
Nc prob for random Π ∈ [N]N .

Theorem 2. Part II: ∀n, one can get O(n) with probability 1− 1
Nc for some routing algorithm.

Proof of Part I:
Suppose permutation Π ∈ [N]N uniformly at random.
Define L(e): load of edge e, i.e. # path using e.

∵ E[L(e)] are equal for different e.

and E[total length of all paths] =
Nn

2

∴ E[L(e)] =
E[total length]

edges
=
Nn/2

Nn
=

1

2
.

• Concentration bound for load L(e):
Time for a path p = e1, e2, · · · , el ≤

∑l
i=1 L(ei). E[T (i)] ≤ n

2 .
E[L(e)] = 1

2 .
L(e) =

∑
i∈[N]Hie, where Hie stands for event e ∈ Pi. Hie are independent, bounded in [0, 1].

1. Chernoff:

Pr[L(e) > 1
2 + t] < e−

2t2

N

This is a terrible bound as t at least need to be comparable to
√
N for a small probabil-

ity. This is because Chernoff bound is not tight enough for event with small probability.

2. Bernstein:

Lemma 3. Let X =
∑

iXi, Xi ∈ [0, 1], independent. Pr[X ≥ t] ≤ 2−t, ∀t ≥ 2eE[X].

3

Proof of Lemma 3:

E[Xi] = pi, V ar(Xi) = E[X2
i]− E[Xi]

2 ≤ E[Xi · 1]− p2i = pi(1− pi) ≤ pi,
=⇒ Xi is (θ(pi), θ(1)) subgamma (in terms of (σ2, B)).

=⇒ X is (θ(
∑
i

pi), θ(1)) = (θ(E[X]), θ(1)) subgamma.

Pr[X ≥ µ+ t] ≤ max{e−
t2

θ(E[X]) , e−θ(t)}, µ = E[X]

∴ for t > cµ, Pr[X ≥ t] ≤ e−θ(t)

Continuing Proof of Part I:

Pr[L(e) ≥ t] ≤ 2−t,∀t ≥ e,

=⇒ Pr[L(e) ≥ 3n] ≤ 1

N3

=⇒ Pr[maxL(e) ≥ 3n] ≤ n

N2
<

1

N

Also, noticed that l ≤ n, we have
∑l

i=1 L(ei) ≤ 3n2 with probability at least 1− n
N3 , thus

Pr[total time ≤ 3n2] ≥ 1− n

N2

which we are not satisfied with. So try another way. Instead of bound load, we bound colliding
packets instead. Define

Si = {j|Pj ∪ Pi 6= ∅}

Lemma 4. Let Ti be the time of path i,we have Ti ≤ n+ |Si|.

This lemma claims for path i,each intersecting path delays it for at most one time step.
Given Π random, for fixed Pi we know that Pr[Pi∩Pj 6= ∅] is independent of Pr[Pi∩Pk 6= ∅]. Also

E[|Si|] ≤ E[#(Pj , e ∈ Pj s.t. e ∈ Pi)]

≤ E[

l∑
i=1

L′(ei)]

=
l

2
≤ n

2

Note that this L′(e) denotes the # of path that go through e except for Pi.
Therefore ∀e,E[L′(e)] ≤ 1

2 .

4

Bounding |Si|:

Pr[|Si| ≥ t] ≤ 2−t,∀t ≥ en.

=⇒ Pr[|Si| ≥ 4n] ≤ 1

N4

By Lemma. 4 we have

Pr[Ti ≤ 5n] ≥ 1− 1

N4

=⇒ Pr[maxTi ≤ 5n] ≥ 1− 1

N3

� of part I.

Proof of Part II:
The problem here is we don’t get random Π anymore, we will retrieve the randomness by randomly
picking a mid-state. Note that the routing process is reversible.

• Given Π adversarial, for each node i choose σ(i) ∈ [N] i.i.d;

• Send i→ σ(i), wait until 5n rounds are complete;

• Send σ(i)→ Π(i), wait until another 5n rounds are complete;

Thus the whole process success with prob ≥ 1− 2
N3 .

References

[MR] Rajeev Motwani, Prabhakar Raghavan Randomized Algorithms. Cambridge University Press,
0-521-47465-5, 1995.

5

