
CS 388R: Randomized Algorithms Fall 2015

Lecture 13 — October 14, 2015

Prof. Eric Price Scribe: John Kallaugher, Elliot Meyerson

1 Overview

This lecture is about the use of probabilistic “fingerprints” to test equality for objects that are
large or expensive to compute explicitly.

2 Matrix Multiplication

Given A,B,C ∈ Rn×n, we would like to know whether:

AB = C

The most obvious way to check this would be to directly compute AB, and then check whether it
is equal to C. This takes O(n3) time using the naive method for matrix multiplication, which can
be reduced to O(n2.373) with horrible constants through more advanced methods.

Suppose, instead, we choose a random r ∈ Rn, and check whether:

ABr = Cr

Then clearly this will hold if AB = C. But what if AB 6= C?

Then AB − C has rows (vi)i∈[n], at least one of which is non-zero, and ABr = Cr will hold iff
vir = 0 for all i.

So we would like to bound P[vr|v 6= 0], and thus the probability that ABr = Cr when AB 6= C.

Let r be drawn uniformly from {0, 1}n, and let i be an index such that vi 6= 0. Then let ra−i be the
event that (r1, . . . , ri−1, ri+1, . . . , rn) = a for any a ∈ {0, 1}n−1.

P[vr = 0] =
∑
a

P

rivi = −
∑
j 6=i

rjvj

∣∣∣∣∣∣ra−i
P[ra−i]

≤ max
a

P

rivi = −
∑
j 6=i

rjvj

∣∣∣∣∣∣ra−i

≤ 1

2

As ri is uniformly distributed among 2 values, at most one of which can satisfy the equation.

1

Similarly, by drawing r from [k]n, we can achieve P[vr|v 6= 0] ≤ 1
k .

If the entries of A,B,C are bounded by nO(1), then for any integral constant c > 0 we can choose
k = nc.

So vr ≤ ncnmaxi vi ≤ nO(1), so no calculation in creating the fingerprint requires more than a
constant number of words, with the word length w is assumed to satisfy 2w = θ(n). As there are
O(n2) such calculations, we can compute the fingerprint in time O(n2) for a failure probability of
n−c.

This method does not work for finite fields, as there may be as few as 2 distinct values that the
fingerprint can take. However, in this case, we can repeat the fingerprinting c log2 n times to get
failure probability n−c in O(n2 log n) time.

3 Polynomial identity testing

We can also use fingerprinting to answer questions like “P (x)Q(x) = R(x)?”, where P,Q,R are
polynomials of degree d, d, 2d, resp. (or more generally check whether some factored form of a
polynomial is equal to another).

Suppose
P (x) = a0x

d + a1x
d−1 + ...+ ad−1x+ ad

Q(x) = b0x
d + b1x

d−1 + ...+ bd−1x+ bd

R(x) = c0x
2d + c1x

2d−1 + ...+ c2d−1x+ c2d

The naiive deterministic computation of (P ·Q)(x) takes O(d2) time, which using convolution and
the FFT can be reduced to O(d log d).

However, simply evaluating a degree O(d) polynomial for any random input x takes only O(d) time:
first sequentially compute each power of x, then multiply each by its coefficient, and take the sum.
So for any random x we can check P (x)Q(x) = R(x), or equivalently P (x)Q(x) − R(x) = 0, in
O(d) time. Let T = P ·Q−R.

Suppose x is drawn uniformly at random from a set S. If T = 0, then P[T (x) = 0] = 1. Suppose
T 6= 0, then T has at most 2d roots in S, so P[T (x) = 0] ≤ 2d

|S| .

To get an O(1d) failure probability we might think to choose x from [d2]. Unfortunately, if we assume
our word size is ≈ log(d), then the powers of d each take on average O(d) space to represent, and
thus evaluating T (x) takes O(d2) time.

To address this space issue, let’s instead check if P (x)Q(x) ≡ R(x) mod p, where p is a prime
larger than any coefficient of these polynomials, but still of size O(1) words. Since p is larger than
any of the coefficients, doing the mod p doesn’t actually change the equality. There are still at most
2d roots of T in Zp, so the failure probability ≤ 2d

p if x is drawn from [p].

When T is multivariate in x, y, ..., if we choose x, y, ... from Zp i.i.d., then P[T (x, y, ...) = 0] is still
at most 2d

p , where 2d here is the total degree of T (by Schwartz-Zippel Lemma; try to prove at
home if you’d like).

2

4 String matching

Suppose Alice has an n-bit string a = a1...an, and Bob has an n-bit string b = b1...bn (suppose for
simplicity of argument that a and b are binary). Alice can send a single message M to Bob, and
Bob would like to determine whether a = b. How large does M have to be?

One idea is for Alice to choose a random hash function h and send h(a). If Alice and Bob have
shared randomness (e.g., look at some opening stock price), they can compute h separately, M can
consist only of h(a). However, if they do not have shared randomness, Alice must send along h
itself, which may make M large.

4.1 Rabin-Karp style hash

Another idea is to always use the polynomialQ(x) =
∑
aix

i. That is, Bob checks if
∑

(ai−bi)xi = 0.
Since Q has at most n roots, if we choose x uniformly at random from a set of size ≥ n2, we
can ensure failure probability ≤ 1

n . As in polynomial identity checking we can consider instead
Q(x) mod p, where p is some prime such that p ≥ n2 but p can still be represented in O(log n) bits.
Then Alice sends x, p and Q(x) mod p to Bob, each of which are of size O(log n) bits, so the total
size of M is O(log n) bits.

4.1.1 The Rabin-Karp algorithm

The h(x) = Q(x) mod p above is the standard hash function for the Rabin-Karp algorithm for
finding occurrences of a pattern in a text.

Setup: Let T be an n-bit string (the text), and b be an m-bit string (the pattern), with m < n.
Problem: Find all i s.t. Ti...Ti+m−1 = b.

The naiive method of brute force checking each such substring takes O(mn) time.

Instead let’s take h(b) and compare it to hj = h(Tj ...Tj+m−1) ∀j. Although each hj would take
O(m) time to compute from scratch, hj+1 can be computed in O(1) time given hj , since

hj =

m∑
i=1

Tj+i−1x
m−i,

and

hj+1 =
m∑
i=1

Tj+ix
m−i = hjx− Tjxm + Tj+m.

=⇒ O(m + n) time total to compute all hj . There is a high probability of success, and only
false positives, so we can use this to construct a corresponding Las Vegas algorithm by doing an
exhaustive check on every positive in O(m) time each. This Las Vegas algorithm has expected time
O(n+ am), where a is the actual number of occurrences of b in T .

3

4.2 An Alternative Method: Treating a and b as Integers

We can instead treat our bitstrings a, b as integers
∑

i ai2
i,
∑

i bi2
i, and compare them modulo a

random prime p with p ≤ k, with k to be decided later. Clearly if a = b, a− b ≡ 0 mod p, so what
is the probability that if a 6= b, a− b ≡ 0 mod p?

a − b ≡ 0 mod p iff p is a factor of a − b. These are n-bit integers, and therefore strictly smaller
than 2n+1, so a− b has no more than n prime factors, as any prime factor must be at least 2.

Using the fact that the proportion of [k] that is prime is θ
(

k
log k

)
, we may choose k = O(n2 log n)

to get n2 primes ≤ k. This will then give us a failure probability ≤ 1
n , and we will need O(log k) =

O(log n) communication to share p and our fingerprint.

4.2.1 Generating a Random Prime

We can repeatedly choose a random x ∈ [k] and return the first one we find that is prime. Using
the previously mentioned fact about the density of primes, we can expect to find a prime within
O(log k) iterations. However, efficiently checking whether x is prime is non-trivial.

One randomised method for primality testing is to use the fact that the polynomials P1 = (X+ 1)x

and P2 = Xx + 1 are equal iff x is prime. However, we still need to test whether these two
polynomials are equal. A natural idea would be to evaluate them at a randomly chosen value of X,
but unfortunately this does not work. Instead, we can choose a random Q of degree polylog in x,
and check whether P1 ≡ P2 mod Q. The details of this are outside the scope of this lecture, but
it allows us to evaluate the primality of x in polylog time.

4

