CS 388R:	Randomized	Algorithms
----------	------------	------------

Fall 2015

Lecture 13 — October 14, 2015

Prof. Eric Price Scribe: John Kallaugher, Elliot Meyerson

1 Overview

This lecture is about the use of probabilistic "fingerprints" to test equality for objects that are large or expensive to compute explicitly.

2 Matrix Multiplication

Given $A, B, C \in \mathbb{R}^{n \times n}$, we would like to know whether:

AB = C

The most obvious way to check this would be to directly compute AB, and then check whether it is equal to C. This takes $O(n^3)$ time using the naive method for matrix multiplication, which can be reduced to $O(n^{2.373})$ with horrible constants through more advanced methods.

Suppose, instead, we choose a random $r \in \mathbb{R}^n$, and check whether:

$$ABr = Cr$$

Then clearly this will hold if AB = C. But what if $AB \neq C$?

Then AB - C has rows $(v_i)_{i \in [n]}$, at least one of which is non-zero, and ABr = Cr will hold iff $v_i r = 0$ for all *i*.

So we would like to bound $\mathbb{P}[vr|v\neq 0]$, and thus the probability that ABr = Cr when $AB\neq C$.

Let r be drawn uniformly from $\{0,1\}^n$, and let i be an index such that $v_i \neq 0$. Then let r_{-i}^a be the event that $(r_1, \ldots, r_{i-1}, r_{i+1}, \ldots, r_n) = a$ for any $a \in \{0,1\}^{n-1}$.

$$\mathbb{P}[vr=0] = \sum_{a} \mathbb{P}\left[r_{i}v_{i} = -\sum_{j \neq i} r_{j}v_{j} \middle| r_{-i}^{a}\right] \mathbb{P}[r_{-i}^{a}]$$
$$\leq \max_{a} \mathbb{P}\left[r_{i}v_{i} = -\sum_{j \neq i} r_{j}v_{j} \middle| r_{-i}^{a}\right]$$
$$\leq \frac{1}{2}$$

As r_i is uniformly distributed among 2 values, at most one of which can satisfy the equation.

Similarly, by drawing r from $[k]^n$, we can achieve $\mathbb{P}[vr|v\neq 0] \leq \frac{1}{k}$.

If the entries of A, B, C are bounded by $n^{O(1)}$, then for any integral constant c > 0 we can choose $k = n^c$.

So $vr \leq n^c n \max_i v_i \leq n^{O(1)}$, so no calculation in creating the fingerprint requires more than a constant number of words, with the word length w is assumed to satisfy $2^w = \theta(n)$. As there are $O(n^2)$ such calculations, we can compute the fingerprint in time $O(n^2)$ for a failure probability of n^{-c} .

This method does not work for finite fields, as there may be as few as 2 distinct values that the fingerprint can take. However, in this case, we can repeat the fingerprinting $c \log_2 n$ times to get failure probability n^{-c} in $O(n^2 \log n)$ time.

3 Polynomial identity testing

We can also use fingerprinting to answer questions like "P(x)Q(x) = R(x)?", where P, Q, R are polynomials of degree d, d, 2d, resp. (or more generally check whether some factored form of a polynomial is equal to another).

Suppose

$$P(x) = a_0 x^d + a_1 x^{d-1} + \dots + a_{d-1} x + a_d$$
$$Q(x) = b_0 x^d + b_1 x^{d-1} + \dots + b_{d-1} x + b_d$$
$$R(x) = c_0 x^{2d} + c_1 x^{2d-1} + \dots + c_{2d-1} x + c_{2d}$$

The naive deterministic computation of $(P \cdot Q)(x)$ takes $O(d^2)$ time, which using convolution and the FFT can be reduced to $O(d \log d)$.

However, simply evaluating a degree O(d) polynomial for any random input x takes only O(d) time: first sequentially compute each power of x, then multiply each by its coefficient, and take the sum. So for any random x we can check P(x)Q(x) = R(x), or equivalently P(x)Q(x) - R(x) = 0, in O(d) time. Let $T = P \cdot Q - R$.

Suppose x is drawn uniformly at random from a set S. If T = 0, then $\mathbb{P}[T(x) = 0] = 1$. Suppose $T \neq 0$, then T has at most 2d roots in S, so $\mathbb{P}[T(x) = 0] \leq \frac{2d}{|S|}$.

To get an $O(\frac{1}{d})$ failure probability we might think to choose x from $[d^2]$. Unfortunately, if we assume our word size is $\approx \log(d)$, then the powers of d each take on average O(d) space to represent, and thus evaluating T(x) takes $O(d^2)$ time.

To address this space issue, let's instead check if $P(x)Q(x) \equiv R(x) \mod p$, where p is a prime larger than any coefficient of these polynomials, but still of size O(1) words. Since p is larger than any of the coefficients, doing the mod p doesn't actually change the equality. There are still at most 2d roots of T in \mathbb{Z}_p , so the failure probability $\leq \frac{2d}{p}$ if x is drawn from [p].

When T is multivariate in x, y, ..., if we choose x, y, ... from \mathbb{Z}_p i.i.d., then $\mathbb{P}[T(x, y, ...) = 0]$ is still at most $\frac{2d}{p}$, where 2d here is the total degree of T (by Schwartz-Zippel Lemma; try to prove at home if you'd like).

4 String matching

Suppose Alice has an *n*-bit string $a = a_1...a_n$, and Bob has an *n*-bit string $b = b_1...b_n$ (suppose for simplicity of argument that *a* and *b* are binary). Alice can send a single message *M* to Bob, and Bob would like to determine whether a = b. How large does *M* have to be?

One idea is for Alice to choose a random hash function h and send h(a). If Alice and Bob have shared randomness (e.g., look at some opening stock price), they can compute h separately, M can consist only of h(a). However, if they do not have shared randomness, Alice must send along hitself, which may make M large.

4.1 Rabin-Karp style hash

Another idea is to always use the polynomial $Q(x) = \sum a_i x^i$. That is, Bob checks if $\sum (a_i - b_i) x^i = 0$. Since Q has at most n roots, if we choose x uniformly at random from a set of size $\geq n^2$, we can ensure failure probability $\leq \frac{1}{n}$. As in polynomial identity checking we can consider instead $Q(x) \mod p$, where p is some prime such that $p \geq n^2$ but p can still be represented in $O(\log n)$ bits. Then Alice sends x, p and $Q(x) \mod p$ to Bob, each of which are of size $O(\log n)$ bits, so the total size of M is $O(\log n)$ bits.

4.1.1 The Rabin-Karp algorithm

The $h(x) = Q(x) \mod p$ above is the standard hash function for the Rabin-Karp algorithm for finding occurrences of a *pattern* in a *text*.

Setup: Let T be an n-bit string (the *text*), and b be an m-bit string (the *pattern*), with m < n. Problem: Find all i s.t. $T_i...T_{i+m-1} = b$.

The naive method of brute force checking each such substring takes O(mn) time.

Instead let's take h(b) and compare it to $h_j = h(T_j...T_{j+m-1}) \forall j$. Although each h_j would take O(m) time to compute from scratch, h_{j+1} can be computed in O(1) time given h_j , since

$$h_j = \sum_{i=1}^m T_{j+i-1} x^{m-i},$$

and

$$h_{j+1} = \sum_{i=1}^{m} T_{j+i} x^{m-i} = h_j x - T_j x^m + T_{j+m}.$$

 $\implies O(m+n)$ time total to compute all h_j . There is a high probability of success, and only false positives, so we can use this to construct a corresponding Las Vegas algorithm by doing an exhaustive check on every positive in O(m) time each. This Las Vegas algorithm has expected time O(n+am), where a is the actual number of occurrences of b in T.

4.2 An Alternative Method: Treating *a* and *b* as Integers

We can instead treat our bitstrings a, b as integers $\sum_i a_i 2^i, \sum_i b_i 2^i$, and compare them modulo a random prime p with $p \leq k$, with k to be decided later. Clearly if $a = b, a - b \equiv 0 \mod p$, so what is the probability that if $a \neq b, a - b \equiv 0 \mod p$?

 $a-b \equiv 0 \mod p$ iff p is a factor of a-b. These are n-bit integers, and therefore strictly smaller than 2^{n+1} , so a-b has no more than n prime factors, as any prime factor must be at least 2.

Using the fact that the proportion of [k] that is prime is $\theta\left(\frac{k}{\log k}\right)$, we may choose $k = O(n^2 \log n)$ to get n^2 primes $\leq k$. This will then give us a failure probability $\leq \frac{1}{n}$, and we will need $O(\log k) = O(\log n)$ communication to share p and our fingerprint.

4.2.1 Generating a Random Prime

We can repeatedly choose a random $x \in [k]$ and return the first one we find that is prime. Using the previously mentioned fact about the density of primes, we can expect to find a prime within $O(\log k)$ iterations. However, efficiently checking whether x is prime is non-trivial.

One randomised method for primality testing is to use the fact that the polynomials $P_1 = (X+1)^x$ and $P_2 = X^x + 1$ are equal iff x is prime. However, we still need to test whether these two polynomials are equal. A natural idea would be to evaluate them at a randomly chosen value of X, but unfortunately this does not work. Instead, we can choose a random Q of degree polylog in x, and check whether $P_1 \equiv P_2 \mod Q$. The details of this are outside the scope of this lecture, but it allows us to evaluate the primality of x in polylog time.