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1 Overview

In this lecture, we study the problem of finding shortest paths. Let G be a graph of m edges and
n vertices. First let’s look at some algorithms.

Algorithm Sources Negative Weight Time

Dijkstra Single No O(m+ n log n)
Floyd-Warshall All Pairs Yes O(n3)
Bellman-Ford Single Yes O(mn)

Table 1: Comparison of some shortest path algorithms.

The Floyd-Warshall algorithm is very simple:

Data: Distance matrix D
Result: Shortest path matrix D
for k in [n] do

for i in [n] do
for j in [n] do

Dij = min(Dij , Dik +Dkj)
end

end

end
Algorithm 1: Floyd-Warshall algorithm

2 Faster algorithm using matrix multiplication

We can have faster algorithms for all pair shortest paths in O(MM(n)) time for unweighted and
undirected graph, where MM(n) is the time to multiply two n× n matrices. Some history of the
matrix multiplication problem:

• Naive: O(n3).

• Strassen ’69: O(n2.8074).

• Coppersmith & Winograd ’89: O(n2.375477).

• Strothers ’10: O(n2.374).

• Vassilevska-Williams ’11: O(n2.372873).
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• Note that the lower bound for MM is still an open problem.(O(n2)??)

The notation nω is often used in papers since ω is being continuously improved.In this lecture,
MM(n) is referred to as nω.

First we observe the similarity between matrix multiplication and FloydWarshal. In fact, matrix
multiplication is FloydWarshal where (min,+) is replaced by (+,×).

Let A be the adjacency matrix, we have that A2
ij is the number of length 2 path from i to j. More

generally, Al
ij is the number of length l path from i to j. If we add the identity matrix to A, which

is equivalent to adding all self-loop in the graph, we have that Al
ij number of paths of length ≤ l.

A naive way of using matrix multiplication to compute shortest paths is to compute: A,A2, ..., An

then let Dij = min
l
s.t.Al

ij > 0. Two problems are O(nω+1) time and big number (which can be

easily solve by just storing Al > 0). Suppose we want a 2-approximation to Dij , which is Xij such

that Dij ∈ [
Xij

2 , Xij ]. We can compute A,A2, A4... in O(MM(n) log n) by repeated squaring.

Now let D′ be the distance on A2, that is the graph with all length 2 paths added as new edges.
D′ can be computed recursively. Our goal is to find D from D′ and A in O(MM(n)) time. There
are two cases:

• If Dij is even then D′ij = Dij/2.

• If Dij is odd then D′ij = (Dij + 1)/2.

So all we need to do is to find D mod 2 (from D′ and A). Consider again two cases:

• If Dij is even then ∀u ∈ N(i), D′uj ∈ {D′ij , D′ij + 1}.

• If Dij is odd then ∀u ∈ N(i), D′uj ∈ {D′ij , D′ij − 1} and ∃u ∈ N(i) s.t. D′uj = D′ij − 1.

That is because if the distance from i to j in A is even (2l) then for a neighbor u of i the distance
from u to j can only be 2l− 1, 2l or 2l+ 1. In A2, the distance from i to j is l and from u to j is l
or l + 1 (if Duj = 2l − 1 in A then it still takes l steps from u to j in A2). By a similar argument,
we have the case for Dij odd. By summing over the neighbors, we have:

• If Dij is even then
∑

u∈N(i)D
′
uj ≥ D′ij |N(i)|.

• If Dij is odd then
∑

u∈N(i)D
′
uj < D′ij |N(i)|.

Also, these sums can be expressed as matrix multiplication:

∑
u∈N(i)

D′uj =
∑
u∈[n]

AiuD
′
uj (1)

= (AD′)ij (2)

So we compare AD′ to D′|N(i)| to get Dij mod 2 and set D = 2D′ − (D mod 2). Each round
takes nω time and total time is O(nω log n).
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3 Identifying shortest paths

Now, given D and A, we want to give an efficient algorithm for finding the shortest paths. For this
lecture, we look at the case of a tripartite graph(Figure 1), with edges going from left to right. Let
A,B be the adjacency matrix for {V1, V2} and {V2, V3} respectively, then we’re interested in finding
Pij = k such that Aik ∩Bkj = 1 in O(nω) time.

Figure 1: Tripartite Graph, |Vi| = n ∀i

Easy Case. Suppose there exists exactly one k∗ such that Aik∗ ∩Bk∗j = 1, then:

• Define A′ such that A′ij = Aij .j

• Then (A′B)ij =
∑
k

kAikBkj = k∗.

• So, we can identify the witness k∗ for a path in O(nω) time.

Medium Case. Suppose there exist r witnesses {k1, . . . , kr} such that Aikd ∩ Bkdj = 1 for all
d ∈ [r], then:

• Define A′ such that A′ij = Aij .j.δj , where δj is a Bernoulli r.v. such that P [δj = 1] = 1/r.

• Now, if exactly one of the r δkt = 1, then (A′B)ij = kt, so, we would have identified a witness.

• Now, P [
∑

t δkt = 1] = r.1r .(1−
1
r )r−1 ≈ 1/e > 1/4.

• So, repeat O(log n) times and each time check result Aikt∩Bktj = 1. Hence, the total runtime
is O(nω log(n)).

Hard Case. If we don’t know the number of witnesses r, then:

• Naive Strategy. Run medium-case strategy for all r = 1, . . . , n. However, then runtime is
O(nω. log(n).n.

• Run medium-case strategy for all r = 1, 2, 4, . . . , n. For this stragy, runtime isO(nω. log(n). log(n).
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• To analyse it’s correctness: Suppose r :true number of witnesses, and let r′ be our guess such
that r′/2 ≤ r ≤ r′:

P [exactly one of true witness δkt = 1] = r.
1

r′
.(1− 1

r′
)r−1

≥ 1/2e

• Since, we have a constant probability of success, running for O(log(n) iterations at r′ such
that r′/2 ≤ r ≤ r′, suffices.

• Hence, an overall runtime of O(nω. log(n). log(n) is sufficient for find a witness.
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