
CS 388R: Randomized Algorithms Fall 2015

Lecture 17 — Nov 4, 2015

Prof. Eric Price Scribe: Enxu Yan, Fu Li

1 Sampling

Example: estimating π:

• Choose x, y ∈ [−1, 1] at random. Check if x2 + y2 ≤ 1.

• The fraction of samples satisfying x2 + y2 ≤ 1 is an estimate of the true prob = π
4 .

Question: how many samples do we need? In general, suppose we are getting samples form
an unknown set with p fraction of elements having some property. How many samples is needed
to estimate p with estimator satisfying p̃ = (1 ± ε)p with probability 1 − δ, that is, an (ε, δ)
approximation.

Let’s say we draw

• n samples and let Z be the number of samples with the property.

• We have E[Z] = pn.

• By Chenoff bound,

P [Z ≥ pn+ t] ≤ e−2t2/n

≤ e−2ε2p2n (with t = εpn)

⇒ needs n ≥ 1

ε2p2
log(

1

δ
) to obtain (ε, δ) approx.

• When p is small, Chenoff gets a loose bound. Let’s try Bernstein-style bound. By Theorem 6
of Lecture 6’s note, since Z =

∑
i Zi with Zi ∈ [0, 1] and variance p(1−p) ≤ p, Zi is subgamma

with (σ2 = 2p,B = 1/2) and Z is subgamma with (σ2 = 2np,B = 1/2). Therefore, we have

P [Z ≥ pn+ t] ≤ max

{
e
− t2

4pn , e−t/4
}
.

Let t ≥
√
pn log 1

δ + log 1
δ , we have 1− δ probability that

Z ≤ pn

1 +

√
log 1

δ

pn
+

log 1
δ

pn

 ⇒ Z ≤ pn (1 +O(ε)) if pn ≥ 1

ε2
log

1

δ
,

which means we only need

n ≥ 1

pε2
log

1

δ

to get (ε, δ) approximation, a tighter result than that from Chenoff.

1

Figure 1: Dynamics of Z as n keeps increasing.

Question: What if we don’t know p?

• After n ≥ 1
pε2

log 1
δ steps, we have Z = pn(1± ε) true with prob. 1− δ.

• Now suppose we run the experiment until getting µ ≈ 1
ε2

log 1
δ number of hits, and we output

p̃ =
µ

ñ
,

where random variable ñ is the number of samples we draw. We have ñ = µ
p̃ ∈

µ
p [1

1+ε ,
1

1−ε]
with high probability based on previous analysis.

• On the other hand, from previous results (from Bernstein), for any n′, we have

Z = pn′

1±O(

√
log 1

δ

n′p
)

with probability 1− δ. Now if n′ ∈ µ

p [1
1+ε ,

1
1−ε], we have

Z = n′p

(
1± ε 1√

1− ε

)
= n′p(1±O(ε))

as desired.

2 Median finding

Given the item set {x1, . . . , xn}, we want to find the median value as soon as possible. First of all,
we can come up with the following methods:

1. Quick sorting : O(n log n).

That is, choose random xi and then sort {xj |xj ≤ xi} and {xk|xk > xi}.

2

2. Randomized select: O(n)

Modify the Quicksort to find the ith biggest item. That is, select xi randomly and recursive
on one side. This will run for log n rounds and the expectation of time E[time] = n+ 3/4n+
(3/4)2 + . . . = O(n). Note that, for getting a concentration result, we need a bit more work.

3. Deterministic select: O(n)

If we first partition the items into groups of 5 and then apply the same divide and conquer
trick, we can get a deterministic algorithm with running time O(n).

In the following, we will show

Theorem 1. There is a random algorithm that can find the median in 3/2n+ o(n) time with high
probability.

Proof. We design the claimed algorithm in the following three steps:

1. Sample s items from the n items where s =
√
n.

Let S denote the set of these s sampled items. Then, we sort S and could find the
median(S) = Sm. However, we cannot guarantee the Sm is the median of the original
set with high probability.

2. Find L,H ∈ S such that median ∈ [L,H] with probability 1− δ and the number of elements
in [L,H] is o(n).

Instead of directly using the median of Sm, we consider about the
]elements in S that rank ≤ (1/2− α)n in the original set. Note that, by the discussion
in the first section, we know

Pr[Z ≥ (1/2− α)s+ t] ≤ exp(−2t2/s)

Let t = αs, then
Pr[Z ≥ 1/2s] ≤ exp(−2α2s).

Namely, the point in sample with rank βs has rank within (β ±
√

log 1/δ
s)n with probability

(1 − δ). Thus, let L = (1/2 −
√

log 1/δ
s)s rank sample in S and H = (1/2 +

√
log 1/δ
s)s rank

sample in S, which satisfies our requirement for the Step 2.

3. With the L,H, we can find the median by scanning the original set, which is stated as the
Algorithm ??.

As last, we consider about the running time. We first spend s log s =
√
n log

√
n = o(n) on sorting

the items in S. Then notice that with high probability 1−δ, |{xi|xi < L}|, |{xi|xi > H}| ≤ n/2 and

|mid| ≤ 4
√
s log 1/δ. For simplicity, we can let δ = 2−n

2/3
, then |mid| = o(n) with high probability.

So know the running time of the Algorithm ?? is at most 3n/2 + |mid| log |mid| = 3n/2 + o(n).
Thus, in total, the running time of the whole random algorithm will be 3n/2 + o(n) with high

probability 1− 2−n
2/3

.

3

Algorithm 1: Scan the item set with L,H

Input: L,H and n items x1, . . . , xn
Output: The median of {x1, . . . , xn}

1 Initially, let countL = countH = 0 and mid = [];
2 for each element xi do
3 if xi ≤ L then
4 countL + +;
5 else if xi ≥ H then
6 countH + +;
7 else if xi ∈ [L,H] then
8 Insert xi into mid;
9 end

10 end

11 end

12 end
13 Sort mid;

14 return the (n/2− countL)th smallest item in the mid.

3 Streaming Algorithm

• See v1, v2,, vm.

• Let xu = number of times i that vi = u.

• n = number of different u.

• Both m, n are very large, and the goal is to get some statistics from v1,...,vm with o(m), o(n)
space.

Example: find heavy hitters

For some α with 1/α� m,n, find S s.t.

{u|xu ≥ αm} ⊆ S ⊆ {u|xu ≥
α

2
m}

with output space |S| ≤ 1
α .

Suppose we know m, we can

1 Sample randomly, keep counters w/in samples.

2 Hash and discard when counters small. There is a well-known deterministic algorithm for
this, called Misra-Gries, which is a generalization of the linear-time Majority Algorithm to
find all items of frequency larger than m/k.

Misra-Gries Algorithm works as follows:

4

• At each stage, we maintain a map of at most k−1 pairs of (item,counter) as the k−1 candidates
of frequent items. (Note we cannot have more than k−1 frequent items of frequency > m/k.).

• In the beginning, the map is initialized as empty.

• For each new incoming vi,

i if item vi is in the map, increment its counter.

ii Otherwise, if map size < k − 1, add vi into map with counter= 1.

iii Otherwise, decrement all the k − 1 counters. Remove any pair with counter= 0.

• Output the k − 1 items in the map.

Properties of Misra-Gries

• It has false positives, but no false negative.

• Proof for no false negative: An item’s counter gets decremented only when the map is full
(with k − 1 items in it), and then there are k items get decremented together (including the
new incoming one decremented from 1 to 0). However, we have only a total counts of m, so
there can be at most m/k such decrements. Therefore, an item of frequency > m/k cannot
be decremented to 0.

• We can remove false positive if having a second pass on v1,...,vm.

References

5

