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1 Overview

In previous lectures, we introduced Count-Min Sketch for finding l1 heavy hitters.

In this lecture, we will introduce Count Sketch and l0 sampling.

2 Review Count-Min sketch

First let’s review Count-Min sketch.

We have a stream of insertions and deletions (u,∆xu) within ”strict” turnstile model(i.e. xu ≥ 0)
and want to recover x̂u.

Count-Min sketch works by maintaining r = log |U |δ bloom filters with size O(k). And get

|x̂u − xu| ≤
‖x−k‖1
k

where x−k is the vector after deleting the top k elements from x.

3 Count sketch

Before introducing Count sketch, let’s consider a medium case algorithm.

3.1 Count-Median sketch

Recall that in Count-Min sketch, we have hash function hi and counters in bloom filters looks like

yi,v =
∑

u,hi(u)=v

xu

we get one estimate from each bloom filter

x̃(i)u = yi,hi(u)

and each estimate is good, since with probability 1
2

|x̃(i)u − xu| ≤
‖x−k‖1
k

(1)
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So then we take the min of all estimates

x̃u = min
i
x̃(i)u

we have with high probability

|x̃u − xu| ≤
‖x−k‖1
k

Now for turnstile model(not necessary strict), we can not use min any more, and a nature idea
would be to change min to median.

However, if we change min to median, we will not get the same bound, since the expectation of
number of estimates not satisfy Eqn. (1) is r

2 , which effectively makes the median not good. But
since the size of each bloom filter is O(k) = Ck, we can choose parameter C larger so that the
probability for each estimate to satisfy Eqn. (1) is 3

4 . Then this modified algorithm (Count-Median)
will work similarly as Count-Min.

3.2 Count sketch

The idea of Count sketch is to symmetrize the noise(in Count-Min we have all positive noise). As
in Count sketch, we define

• pair-wise independent hash functions hi : U → [c], and random signs si(u) ∈ {±1}

• counters in bloom filter
yi,v =

∑
u,hi(u)=v

si(u)xu

• estimate from one bloom filter x̃
(i)
u = si(u)yi,hi(u)

• estimate of xu is x̃u = mediani x̃
(i)
u

Now we give the bounds of Count sketch.

For each u, first we condition on u not colliding with any top |H| elements by using hi, which is

true with probability 1− |H|c . Then

(x̃(i)u − xu)2 =
∑

u′ 6∈H∪{u}

x2u′1hi(u)=hi(u′) +
∑

u1,u2 6∈H∪{u}

si(u1)si(u2)1hi(u1)=hi(u)=hi(u2)xu1xu2

The expectation of the second term is zero since

E[si(u1)si(u2)] = 0

Hence we have

E(x̃(i)u − xu)2 = E[
∑

u′ 6∈H∪{u}

x2u′ ]
1

c

≤ ‖x−k‖
2

c

Therefore (x̃
(i)
u − xu)2 ≤ 8‖x−k‖2

c with probability ≥ 7
8 .
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3.3 Comparison with Count-Min sketch

In generaly, l2 norm is better than l1 norm.

For example, consider power law distribution with parameter α, the i-th largest element has fre-
quency proportional to i−α. With this kind of distribution, Count-Min is good for α > 1, Count
sketch is good for α > 1

2 .

4 l0 sampling

Given a stream of items v1, v2, . . ., we would like to sample one element from U , where U contains
all unique elements appeared in the stream. To be specific, we want to design an online algorithm
using sublinear space. Therefore storing U is not realistic.

Here we consider three version of this problem.

4.1 First version

In the first version, each elements appears once. We can use Reservoir Sampling1, which basically
works as follows

• Set the first element as candidate.

• For i ≥ 2, switch i-th element with the candidate with probability 1
i

• Output candidate after the stream.

4.2 Second version

In the second version, we have duplicates of the same elements in the stream. For this version, we
can pick a uniformly random hash function h such that

h : U → [0, 1]

Then we store the element v that minimize h(v), and output v.

If h is fully independent, we get perfect performance

• O(1) words

• O(1) time for each element in the stream and storing and evaluating h

• x is uniformly random from U

But fully independence is not practical. So we have an alternative reasoning

1https://en.wikipedia.org/wiki/Reservoir_sampling#Reservoir_with_Random_Sort

3



• We can use min-wise independence from [BCF00], which basically means

∀S, x ∈ S, P[h(x) = min
x′∈S

h(x′)] =
1± ε
|S|

• Theorem 1.1 in [I01] shows that O(log 1
ε )-wise independence implies approximate min-wise

independence for |S| < ε|U |

4.3 Third version

In this version, we have deletions in the stream. To solve this problem, we first introduce a few
building blocks. The high level idea is to subsample the stream so that each substream contains
one unique element with good probability. And recover the element back using certain simple
techniques.

4.3.1 subsampling

Similar to the way we recover shortest path in lecture 15, we first get a 2-approximation of ‖x‖0
by choosing log |U | different r to be 1, 2, 4, . . . , log |U |. For each r, we choose log |U | different hash
function hi where hi : U → [r] and keep the samples with hi(v) = 0. Each hash function corresponds
to one subsample set.

As we did in lecture 15, if r is a 2-approximation to the true ‖x‖0, i.e., size of distinct elements of
the stream, with probability at least 1

2e , you have exactly one unique element in one subsample set.
Since we choose O(log |U |) subsample sets, with high probability 1− |U |−c, we will get one unique
element in some subsample set.

4.3.2 Check if only one element remains

Although each time with probability ≥ 1
2e only one element remains from the sketching process, we

need to check whether it is actually the case so that we can recover and output the element. And
unlike in lecture 15, this process is much tricky.

Now let x be a subsample vector(corresponding to the number of occurrence of each element in
this subsample set).

We want to be able to check if ‖x‖0 = 1 w.h.p to verify if we succeed in subsampling. This can be
further divided into two tasks.

• We first check if ‖x‖0 ≥ 1. To do so, we randomly pick v ∈ {±1}|U | and check if vTx = 0.
For some xi 6= 0

vTx = 0⇔ −vT−ix−i = vixi (v−i is vector v without coordinate i)

since vi is randomly picked from {±1}, the probability of a false positive(i.e. vTx = 0 for some
x 6= 0) is at most 1

2 . Therefore by repeating log |U | times, we succeed with high probability.
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• Suppose we know ‖x‖0 ≥ 1, we want to know if there are more than one element in this
subsample set. To do this, we randomly split x into x1 and x2 and use the method described
in the first part above. If both vT1 x1 6= 0 and vT2 x2 6= 0 happens, we are certain that ‖x‖0 ≥ 2.
And we make mistake with probability at most 7

8 . 2 So again by repeating this log |U | times,
we succeed in this task with high probability.

4.3.3 recover the index of the unique element

If for some subsample vector x, ‖x‖0 = 1, we can use a simple technique to recover the non-zero
coordinate(i.e. the unique element) i∗

• Pick v′ = (1, . . . , 1) and v = (1, 2, 3, . . . , |U |)

• Maintain vTx and (v′)Tx during the stream.

• We have
vTx = xi∗i

∗, (v′)Tx = xi∗

So we output i∗ = (vT x)
(v′)T x
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2To be specific, with probability 1
2
, two unique element are not both in x1 or x2. Then with probability 1

4
there

is no false positive on both x1 and x2. This means we succeed with probability 1
8
.
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