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1 Overview

In this lecture we will look at the Graph Sparsification Problem which is the following: Given
a dense graph G = (V,EG,WG), find a sparse graph H = (V,EH ,WH), which approximately
preserves some properties of G. The vertex set will remain the same, but the edge set and their
weights can be different. We will henceforth denote |V | by n.

What are the different properties of G that we would like to preserve?

2 Cut-Sparsifier

In the first lecture we studied a randomized algorithm to compute the min-cut in a graph. Here we
study a related problem of finding a cut-sparsifier, namely, a sparse graph H, that approximately
preserves all the cuts in G. Formally,

For a given graph G = (V,E,W ), a cut S ⊆ V has size:

CG(S) =
∑

(u,v)∈E

W (u, v) · I{u∈S,v /∈S}

Definition 1 (Cut-sparsifier). H is a cut-sparsifier for G if:

∀S ⊆ V,CH(S) = (1± ε)CG(S)

Definition 2 (Expander). A d-regular unweighted graph is an expander if:

∀S, 2|S| < n =⇒ (1− ε)d|S| ≤ CH(S) ≤ d|S|

Note that the rightmost inequality holds for all d-regular graphs. So intuitively, what we are saying
is that every subset has a large neighborhood, which implies that every two vertices are
connected by a short path (length O(log n)). Also, note that for the definition to be meaningful,
it is necessary to restrict |S|, since by choosing S = V , we have CG(S) = 0 which does not satisfy
our requirement.

Example of cut sparsifier: Suppose G = Kn = complete graph on n vertices. For |S| < εn, we have:

CG(S) = |S|(n− |S|) ∈ n|S| · [1− ε, 1]

Now, if H is chosen to be a degree d-expander and all edge weights = n/d, then:

CH(S) ∈ d|S|n
d
· [1− ε, 1] = n|S| · [1− ε, 1]
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=⇒ CG(S)

CH(S)
∈ [1− ε, 1]

[1− ε, 1]
∈ [1±O(ε)]

So, H approximates cuts in G for all subsets with small size. If ε > 1/2, then H is a cut sparsifier
for G.

3 Spectral Sparsifier

Here we generalize the notion of cut-sparsification [2]. First let us define what a spectral sparsifier
is. For this purpose here is a cool analogy:

Think of the given graph as a network of resisitors. The weight of an edge can be thought of as
the conductance (inverse of resistance) of that edge. Now if we apply some external voltage at
the vertices, some current will flow along the edges. This will result in dissipation of power (Joule
effect). So now, we can think of a function PG(·), that takes applied node voltages as input and
gives the total power dissipation as output. Obviously this function depends on the graph. We will
denote the vector of voltages by x ∈ Rn. Thus,

PG(x): Voltage → Power.

Since power is non-negative, PG(x) : Rn → R+.

By Ohms law, for every edge,

V = IR = I
C ,

where I is the current along an edge, V is the voltage difference, and C = 1
R is the conductance of

the edge.

Let Pe = power dissipated along edge e. Pe = IV = V 2C. Total power is the sum of all edge
powers, and also, conductance is same as edge weights. So

PG(x) =
∑

e=(u,v)∈EG

W (u, v)(xu − xv)2

There is a more compact way of writing this expression. For this, consider only one edge e.

Pe = W (u, v)(xu − xv)2

= W (u, v)(x2u − 2xuxv + x2v)

= x>



...
...

. . . W (u, v) . . . −W (u, v) . . .
...

...
. . . −W (u, v) . . . W (u, v) . . .

...
...


x

:= x>Au,vx.
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In Au,v defined above, all the other coefficients are 0. Define

LG =
∑

(u,v)∈EG

Au,v.

So we have

LG(u, v) =

{
−W (u, v) u 6= v∑

tW (u, t) u = v

LG is called the graph Laplacian. So we have PG(x) =
∑
e∈EG

Pe = x>LGx

Definition 3 (Spectral Sparsifier). A spectral sparsifier is a graph that spectrally approximates the
graph Laplacian. i.e. for all voltages x, we should have

PH(x) = (1± ε)PG(x)

⇔ (1− ε)x>LGx ≤ x>LHx ≤ (1 + ε)x>LGx ∀ x ∈ Rn

⇔ (1− ε)LG � LH � (1 + ε)LG

Notation: � is the generalized matrix inequality on symmetric matrices: two symmetric matrices
A and B satisfy A � B iff (B −A) is positive semidefinite.

Theorem 4. Spectral Sparsifier =⇒ Cut-sparsifier

Proof. Let S be any subset of vertices. Let x = IS . Since (xu−xv)2 = 1 iff (u, v) has an endpoint in
S, and the other endpoint out of S (so (u, v) is in the cut defined by S), we have PG(x) = CG(x)

Thus, for cut sparsification, we just need

(1− ε)x>LGx ≤ x>LHx ≤ (1 + ε)x>LGx ∀ x ∈ {0, 1}n

4 Sampling Edges

Notice that the condition for spectral sparsification can be rewritten as

−εLG � LH − LG � εLG

This is very similar to what we wanted to achieve in Johnson-Lindenstrauss Lemma, i.e. we want
a compact representation such that we do not deviate too much from our input. Thus, in this
section, we consider sampling the edges to obtain an approximation to LG.

Let pe be the probability of sampling the edge e. We know that if an edge is included with weight
ce, then the Laplacian must have ce entry in the pattern of Au,v.

Define Ye = ce(eu − ev). Where eu is the vector of all zeros except for 1 at u-th position. Now let
Z1, Z2, . . . Zm be i.i.d. samples such that Zi = Ye with probability pe. So,
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E[ZiZ
>
i ] =

∑
e

peYeY
>
e

=
∑
e

pec
2
e(eu − ev)(eu − ev)>

Now if we choose ce =

√
W (u, v)
√
pe

, then

E[ZiZ
>
i ] =

∑
e

W (u, v)(eu − ev)(eu − ev)>

=
∑

e=(u,v)

Au,v

= LG

So, we output LH =

m∑
i=1

ZiZ
>
i , which converges to LG if m is large and the H thus formed is at

least m-sparse (we only took m edges).

Next, we try to find how large m should be. For this, we first consider a simpler goal of making
‖LH−LG‖ small. This will imply the desired spectral bound if LG is round, i.e. if all its eigenvalues
are similar. Such graphs are also called isometric.

Notation: ‖A‖ = sup‖x‖≤1 ‖Ax‖2.

We will show E[‖LH − LG‖] ≤
√

n logn
m ‖LG‖, which gives us an ε-approximation if m = O(n logn

ε2
).

Theorem 5 (Non-commutative Bernstein inequality). Extension of Bernstein-type inequalities to
matrices [1].

• Xi independent symmetric matrices, i = 1 . . . n

• E[Xi] = 0

• ‖Xi‖ ≤ K

•

∥∥∥∥∥
n∑
i=1

E[X2
i ]

∥∥∥∥∥ ≤ σ2
Then: ∃ C < 0, such that

P

(∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥ ≥ t
)
≤ 2n · eCmin

(
t2

σ2
, t
K

)

We omit the proof of this theorem.
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Theorem 6 (R-V theorem). Suppose we have:

• Xi i.i.d. vectors in Rn, i = 1 . . .m

• ‖Xi‖2 ≤ Q, Q ≥ 1

• ‖E[XX>]‖ ≤ 1

Then:

E

[∥∥∥∥∥ 1

m

m∑
i=1

XiX
>
i − E[XX>]

∥∥∥∥∥
]

> Q

√
log n

m

Proof. Let Y = XX> − E[XX>]. We want to apply the non-commutative Bernstein theorem to
Y .

‖Y ‖
?
≤ K:

‖Y ‖ = sup
‖u‖≤1

u>Y u

≤ X>XX>X

‖X‖22
− inf
‖u‖2≤1

u>E[XX>]u

≤ ‖X‖22 − inf
‖u‖2≤1

E[u>XX>u]

≤ ‖X‖22
≤ Q2

(XX> is positive semi-definite (Gram matrix), so 0 � XX>, or equivalently, ∀u, u>XX>u ≥ 0.)∥∥∥∥∥
m∑
i=1

E[Y 2
i ]

∥∥∥∥∥ ?
≤ σ2:

∥∥∥∥∥
m∑
i=1

E[Y 2
i ]

∥∥∥∥∥ ≤ m‖E[Y 2
1 ]‖

= m
∥∥∥E [(XX>)2 − E[XX>]2

]∥∥∥
≤ m

(∥∥∥E[‖X‖22 ·XX>]
∥∥∥+

∥∥∥E[XX>]
∥∥∥2)

∥∥∥E[‖X‖22 ·XX>]
∥∥∥ = sup

‖u‖2≤1
E
[
u>‖X‖22 ·XX>u

]
≤ Q2 sup

‖u‖2≤1
E
[
u> ·XX>u

]
= Q2 · ‖E[XX>]‖
≤ Q2 · 1
≤ Q2
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∥∥∥∥∥
m∑
i=1

E[Y 2
i ]

∥∥∥∥∥ ≤ m
(∥∥∥E[‖X‖22 ·XX>]

∥∥∥+
∥∥∥E[XX>]

∥∥∥2)
≤ m(Q2 + 12)

≤ 2mQ2

Since the Yi are symmetric and independent, and E[Yi] = 0, we can apply the non-commutative
Bernstein inequality:

P

(∥∥∥∥∥
m∑
i=1

E[Yi]

∥∥∥∥∥ ≥ mt
)
≤ 2m · eCmin

(
mt2

2Q2 ,
mt
Q2

)

Hence, for t = O
(
Q2

m log n+Q
√

2 logn
m

)
:

P

(∥∥∥∥∥
m∑
i=1

E[Yi]

∥∥∥∥∥ ≥ mt
)
≤ 1

nK

More on the subject can be found here [3].
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