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1 Overview

In the last class, we defined the terms cut sparsifier and spectral sparsifier and introduced Roman
Vershynin (RV) Lemma which will help us analyse Laplacians of random graphs. In this lecture, we
show how to produce spectral sparsifiers with O(n log n/ε2) edges where n is the number of nodes
in the graph and ε is a measure of the quality of the sparsifier.

2 Background

Definition 1. For A and B symmetric matrices, A � B if ∀x, xᵀAx ≤ xᵀBx

Definition 2. Graph Laplacian
The Laplacian matrix of a weighted graph G = (V,E,w), where w(u,v) is the weight of edge (u, v)
is defined by

LG(u, v) =

{
−w(u,v) if u 6= v∑

z w(u,z) if u = v

The Laplacian can be expressed in terms of differences of standard basis vectors.

LG =
∑

e=(u,v)

we(eu − ev)(eu − ev)ᵀ

=
∑

e=(u,v)

weueu
ᵀ
e

where ei is the standard basis vector such that (ei)j = δij and for edge e = (u, v), ue = eu − ev.

Definition 3. Spectral Sparsifier
A graph H = (V,E′, w′) is an ε−spectral approximation of a graph G = (V,E,w) if

(1− ε)LG � LH � (1 + ε)LG

where LG, LH are the Laplacians of graphs G,H respectively.

Note that xᵀLGx =
∑

e=(u,v)we(xu − xv)2 is shift invariant. So in the analysis below, we restrict
ourselves to x such that xᵀ1 = 0.

Lemma 4. Roman Vershynin Lemma
Let {Xi}mi=1 be i.i.d random vectors in Rn, such that each Xi is uniformly bounded

‖Xi‖2 ≤ κ, ‖E[XiX
ᵀ
i ]‖ ≤ 1 ∀i ∈ [m]
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Then

E

[
‖ 1

m

m∑
i=1

XiX
ᵀ
i − E[XXᵀ]‖

]
≤ κ

√
log n

m

Last class, we proposed the following randomized algorithm for computing a spectral sparsifier.

Algorithm 1 Generates spectral sparsifier

Input: G = (V,E,w). Output: H = (V,E′, w′), a spectral sparsifier of G
1: for m times do
2: Choose each edge e ∈ E with some probability pe
3: Add edge e to E′ with w′(e) = we

mpe

In expectation, the Laplacian of the graphH output by the above algorithm is equal to the Laplacian

of G. Let Ye =
√

we
pe
ue and let {Zi}mi=1 be independent random variables where Zi = Ye with

probability pe. Note that LH = 1
m

∑m
i=1 ZiZ

ᵀ
i .

E[LH ] = E

[
1

m

m∑
i=1

ZiZ
ᵀ
i

]
= E[Z1Z

ᵀ
1 ]

=
∑
e∈E

peYeY
ᵀ
e

=
∑
e∈E

weueu
ᵀ
e

= LG

In the next section we discuss how to choose pe, a probability distribution over edges in G, that
gives us a good spectral sparsifier.

3 Spectral Sparsifiers

We start with the simple case of complete graphs, which have a spherical Laplacian, and move
to non-complete graphs in Section 3.2. To keep the analysis simple we only consider unweighted
graphs.

3.1 Complete Graphs

When G is a complete graph, the Laplacian LG is given by:

LG =


n− 1 −1 · · · −1
−1 n− 1 · · · −1
...

...
. . .

...
−1 −1 · · · n− 1

 = nI − 11ᵀ
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where 1 is a vector of all 1’s.

From Definition 3, for H to be a spectral sparsifier, we need that

(1− ε)LG � LH � (1 + ε)LG

⇔ (1− ε)xᵀLGx ≤ xᵀLHx ≤ (1 + ε)xᵀLGx ∀x s.t. xᵀ1 = 0

⇔ |xᵀ(LH − LG)x| ≤ εxᵀLGx ∀x s.t. xᵀ1 = 0

⇔ ||LH − LG||2 ≤ εn

where the last step follows from the assumption that 1ᵀx = 0 and xᵀLGx = xᵀ (nI − 11ᵀ)x =
n||x||2.

We now show that when m ≥ (n logn
ε2

) and pe is uniform over edges, Algorithm 2 outputs an
ε−spectral approximatior of G. We have:

pe =
1(
n
2

) = Θ

(
1

n2

)
It is easy to see that the random variables {Zi}mi=1 are uniformly bounded:

‖Zi‖2 = ‖Ye‖ (for some edge e)

=

√
we
pe

√
uᵀeue

=

√
1

pe

√
2

= Θ(n)

Also, from before we have that
‖E [ZiZ

ᵀ
i ] ‖ = ‖LG‖ = n

Applying RV Lemma on random variables Xi = Zi√
n

, we get

E

(
1

n
‖LH − LG‖

)
≤
√
n log n

m

Thus

E (‖LH − LG‖) ≤ n
√
n log n

m

≤ εn if m ≥
(
n log n

ε2

)

So for m ≥ (n logn
ε2

), we get an ε−approximate spectral sparsifier of G.

3.2 Non-complete Graphs

For non-complete graphs, there are two issues that we need to deal with.
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1. The Laplacian of a non-complete graph need not be spherical. So in order to apply RV lemma,
rather than looking at random variables {Zi}mi=1, we look at transformed random variables
{AZi}mi=1 for some matrix A.

2. Need to find a better sampling distribution, pe. For example, in the case of a barbell graph,
we need to return the middle edge to get a good sparsifier.

Consider an unweighted graph G. Let U ∈ R|E|×n be matrix representing |E| edges where

U =


uᵀ1
uᵀ2
· · ·
uᵀ|E|


Then the Laplacian for G can be represented as

LG = UᵀU

LG is symmetric since Lᵀ
G = LG. Also we have that ∀x, xᵀLGx = xᵀUᵀUx = ‖Ux‖ ≥ 0 and thus

LG is positive semi-definite. This implies that all eigenvalues of LG are non-negative. Using the
eigenvalue decomposition of LG, we can express LG as

LG =

n∑
i=1

λibib
ᵀ
i

where {bi}ni=1 are orthonormal eigenvectors and λi ≥ 0.

Positive powers of LG can be calculated by

L p
G =

n∑
i=1

λpi bib
ᵀ
i

The Moore-Penrose pseudo-inverse of LG is given by

L†G =
n∑
i=1
λi 6=0

λ−1i bib
ᵀ
i

and thus

(L
†
G)

1
2 =

n∑
i=1
λi 6=0

λ
−1/2
i bib

ᵀ
i

Using these, we can express the projector onto the span of LG as

ΠLG
=
∑
i=1
λi 6=0

bib
ᵀ
i = (L†G)

1
2

ᵀ

L
1
2

G = L
1
2

G(L†G)
1
2

ᵀ
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Note that Πᵀ
LG

ΠLG
= ΠLG

.

For H to be a spectral sparsifier of G, we need that

xᵀLHx = (1± ε)xᵀLGx, ∀x
⇔ xᵀLHx = (1± ε)xᵀLGx, ∀x s.t. xT1 = 0

⇔ xᵀLHx = (1± ε)xᵀLGx, ∀x ∈ span(LG)

where the last statement holds when G is a connected graph (because LG has rank n − 1 for a
connected graph and LG1 = 0). Thus for any x ∈ span(LG):

x = ΠLG
x = (L†G)

1
2

ᵀ

L
1
2
G x = (L†G)

1
2

ᵀ

y

where y = L
1
2
G x. Then the condition becomes:

xᵀLHx = (1± ε)xᵀLGx, ∀x ∈ span(LG)

⇔ yᵀL†
1
2

G LHL
†
1
2
ᵀ

G y = (1± ε)yᵀL†
1
2

G LGL
†
1
2
ᵀ

G y

= (1± ε)yᵀL†
1
2

G L
1
2

ᵀ

G L
1
2
GL
†
1
2
ᵀ

G y

= (1± ε)yᵀΠᵀ
LG

ΠLG
y

= (1± ε)yᵀΠLG
y, ∀y

Subtracting yᵀΠLG
y from both sides, we get

|yᵀ(L†
1
2

G LHL
†
1
2
ᵀ

G −ΠLG
)y| ≤ εyᵀΠLG

y = εyᵀy

⇔ ‖L†
1
2

G LHL
†
1
2
ᵀ

G −ΠLG
‖ ≤ ε

We now apply RV Lemma on random variables Ai = L†
1
2

G Zi. Let κ = max ‖Ai‖ and we have:

‖E[AiA
ᵀ
i ]‖ = ‖L†

1
2

G E[ZiZ
ᵀ
i ]L†

1
2
ᵀ

G ‖

= ‖L†
1
2

G LGL
†
1
2
ᵀ

G ‖
= ‖ΠLG

‖
≤ 1

Applying RV Lemma we get:

‖ 1

m

∑
AiA

ᵀ
i − E[AiA

ᵀ
i ]‖ = ‖L†

1
2

G LHL
†
1
2
ᵀ

G −ΠLG
‖ ≤ κ

√
log n

m

So if m ≥ (κ2 log n/ε2), we get a ε−approximate sparsifier. Note that we haven’t yet defined the
probability distribution pe. κ will depend on the choice of pe.

To pick a good probability distribution pe and to compute κ, we appeal to physical intution.
Consider the graph to represent nodes on a circuit and let x ∈ Rn denote the voltages on each
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node. The current flow along edge e, denoted by Ie, from u to v is related to the voltage drop.
Thus Ie = xu − xv = uex. The flow along all edges is given by I = Ux where I ∈ R|E|.

Given a battery on the circuit, with xs and xt fixed at some voltages, we can calculate the rest of
the internal voltages xv using Kirchoff’s Laws:

current into vertex− current out of vertex = external flow

We know that the external flow is: (∆ at s,−∆ at t, 0 elsewhere )

For node v,

(Iext)v =
∑

e=(u,v)

Ie −
∑

e=(v,u)

Ie

=
∑
e

Ie(Ue)v

= (UᵀI)v

= (UᵀUx)v

= (LGx)v

We know the external flow and want voltages so we compute x = L†GIext where L†G is the pseudoin-
verse.

If we set Iext to ue for some edge (u, v) to indicate that 1 unit of current is pushed from u to v,

then L†Gue is a vector of all voltages in the circuit and thus uᵀeL
†
Gue is the voltage drop from u to

v.

From Ohm’s Law, we know that V = IReff where Reff is the effective resistance. Since we have

1 unit of current, we conclude that Reff = uᵀeL
†
Gue.

We use this fact in our calculation of ‖Ai‖.

‖Ai‖2 = Aᵀ
iAi

= Zᵀ
i L
†
1
2
ᵀ

G L†
1
2

G Zi

= Zᵀ
i L
†
GZi

=
1

pe
uᵀeL

†
Gue

=
Reff
pe

This suggests to set pe ∝ Reff and after normalizing

pe =
Reff (e)∑
Reff (e)

Thus κ2 =
∑
Reff (e) and we need m ≥ ((

∑
Reff (e)) log n/ε2) to get a ε−approximate sparsifier.

And finally to compute
∑
Reff (e), we use Foster’s Theorem.
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Theorem 5. Foster’s Theorem
Let Reff (e) denote the effective resistance along edge e on a connected graph of n nodes. Then∑

e∈E
Reff (e) = n− 1

Proof. Define P = UL†GU
ᵀ. Then

P 2 = UL†GLGL
†
GU

ᵀ = P

Thus P is a projection matrix, and all its eigenvalues λi ∈ {0, 1}. Since LG has rank n − 1 and
P has the same rank as LG, n − 1 eigenvalues of P are equal to 1 and the rest are 0. From the
definition of effective resistance we have:

Reff (e) = uᵀeL
†
Gue = Pe,e

⇒
∑

Reff (e) = tr(P ) =
∑

λi = n− 1

Finally, we conclude that we need m ≥ (n log n/ε2) and complete the proof for non-complete graphs.
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