CS 388	R: Rand	omized A	Algorithms
--------	---------	----------	------------

Fall 2015

Lecture 21 — Nov 18, 2015

Prof. Eric Price

Scribe: Chad Voegele, Arun Sai

1 Overview

In the last class, we defined the terms *cut sparsifier* and *spectral sparsifier* and introduced Roman Vershynin (RV) Lemma which will help us analyse Laplacians of random graphs. In this lecture, we show how to produce spectral sparsifiers with $O(n \log n/\epsilon^2)$ edges where n is the number of nodes in the graph and ϵ is a measure of the quality of the sparsifier.

2 Background

Definition 1. For A and B symmetric matrices, $A \leq B$ if $\forall x, x^{\intercal}Ax \leq x^{\intercal}Bx$

Definition 2. Graph Laplacian

The Laplacian matrix of a weighted graph G = (V, E, w), where $w_{(u,v)}$ is the weight of edge (u, v) is defined by

$$L_G(u, v) = \begin{cases} -w_{(u,v)} & \text{if } u \neq v \\ \sum_z w_{(u,z)} & \text{if } u = v \end{cases}$$

The Laplacian can be expressed in terms of differences of standard basis vectors.

$$L_G = \sum_{e=(u,v)} w_e(e_u - e_v)(e_u - e_v)^{\mathsf{T}}$$
$$= \sum_{e=(u,v)} w_e u_e u_e^{\mathsf{T}}$$

where e_i is the standard basis vector such that $(e_i)_j = \delta_{ij}$ and for edge $e = (u, v), u_e = e_u - e_v$.

Definition 3. Spectral Sparsifier

A graph H = (V, E', w') is an ϵ -spectral approximation of a graph G = (V, E, w) if

$$(1-\epsilon)L_G \preceq L_H \preceq (1+\epsilon)L_G$$

where L_G , L_H are the Laplacians of graphs G, H respectively.

Note that $x^{\mathsf{T}}L_G x = \sum_{e=(u,v)} w_e (x_u - x_v)^2$ is shift invariant. So in the analysis below, we restrict ourselves to x such that $x^{\mathsf{T}} \mathbf{1} = 0$.

Lemma 4. Roman Vershynin Lemma

Let $\{X_i\}_{i=1}^m$ be i.i.d random vectors in \mathbb{R}^n , such that each X_i is uniformly bounded

$$\|X_i\|_2 \le \kappa, \quad \|\mathbb{E}[X_i X_i^{\mathsf{T}}]\| \le 1 \quad \forall i \in [m]$$

Then

$$\mathbb{E}\left[\left\|\frac{1}{m}\sum_{i=1}^{m}X_{i}X_{i}^{\mathsf{T}}-\mathbb{E}[XX^{\mathsf{T}}]\right\|\right] \leq \kappa\sqrt{\frac{\log n}{m}}$$

Last class, we proposed the following randomized algorithm for computing a spectral sparsifier.

Algorithm 1 Generates spectral sparsifier

Input: G = (V, E, w). **Output:** H = (V, E', w'), a spectral sparsifier of G

- 1: for m times do
- 2: Choose each edge $e \in E$ with some probability p_e
- 3: Add edge e to E' with $w'(e) = \frac{w_e}{mp_e}$

In expectation, the Laplacian of the graph H output by the above algorithm is equal to the Laplacian of G. Let $Y_e = \sqrt{\frac{w_e}{p_e}} u_e$ and let $\{Z_i\}_{i=1}^m$ be independent random variables where $Z_i = Y_e$ with probability p_e . Note that $L_H = \frac{1}{m} \sum_{i=1}^m Z_i Z_i^{\mathsf{T}}$.

$$\mathbb{E}[L_H] = \mathbb{E}\left[\frac{1}{m}\sum_{i=1}^m Z_i Z_i^{\mathsf{T}}\right]$$
$$= \mathbb{E}[Z_1 Z_1^{\mathsf{T}}]$$
$$= \sum_{e \in E} p_e Y_e Y_e^{\mathsf{T}}$$
$$= \sum_{e \in E} w_e u_e u_e^{\mathsf{T}}$$
$$= L_G$$

In the next section we discuss how to choose p_e , a probability distribution over edges in G, that gives us a good spectral sparsifier.

3 Spectral Sparsifiers

We start with the simple case of complete graphs, which have a spherical Laplacian, and move to non-complete graphs in Section 3.2. To keep the analysis simple we only consider unweighted graphs.

3.1 Complete Graphs

When G is a complete graph, the Laplacian L_G is given by:

$$L_G = \begin{pmatrix} n-1 & -1 & \cdots & -1 \\ -1 & n-1 & \cdots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & n-1 \end{pmatrix} = nI - \mathbf{1}\mathbf{1}^{\mathsf{T}}$$

where **1** is a vector of all 1's.

From Definition 3, for H to be a spectral sparsifier, we need that

$$(1-\epsilon)L_G \leq L_H \leq (1+\epsilon)L_G$$

$$\Leftrightarrow (1-\epsilon)x^{\mathsf{T}}L_G x \leq x^{\mathsf{T}}L_H x \leq (1+\epsilon)x^{\mathsf{T}}L_G x \qquad \forall x \text{ s.t. } x^{\mathsf{T}}\mathbf{1} = 0$$

$$\Leftrightarrow |x^{\mathsf{T}}(L_H - L_G)x| \leq \epsilon x^{\mathsf{T}}L_G x \qquad \forall x \text{ s.t. } x^{\mathsf{T}}\mathbf{1} = 0$$

$$\Leftrightarrow ||L_H - L_G||_2 \leq \epsilon n$$

where the last step follows from the assumption that $\mathbf{1}^{\mathsf{T}}x = 0$ and $x^{\mathsf{T}}L_G x = x^{\mathsf{T}} (nI - \mathbf{1}\mathbf{1}^{\mathsf{T}}) x = n||x||^2$.

We now show that when $m \ge (\frac{n \log n}{\epsilon^2})$ and p_e is uniform over edges, Algorithm 2 outputs an ϵ -spectral approximation of G. We have:

$$p_e = \frac{1}{\binom{n}{2}} = \Theta\left(\frac{1}{n^2}\right)$$

It is easy to see that the random variables $\{Z_i\}_{i=1}^m$ are uniformly bounded:

$$\begin{split} \|Z_i\|_2 &= \|Y_e\| \quad \text{(for some edge e)} \\ &= \sqrt{\frac{w_e}{p_e}} \sqrt{u_e^{\mathsf{T}} u_e} \\ &= \sqrt{\frac{1}{p_e}} \sqrt{2} \\ &= \Theta(n) \end{split}$$

Also, from before we have that

$$\|E\left[Z_i Z_i^{\mathsf{T}}\right]\| = \|L_G\| = n$$

Applying RV Lemma on random variables $X_i = \frac{Z_i}{\sqrt{n}}$, we get

$$E\left(\frac{1}{n}\|L_H - L_G\|\right) \le \sqrt{\frac{n\log n}{m}}$$

Thus

$$E\left(\|L_H - L_G\|\right) \le n\sqrt{\frac{n\log n}{m}}$$
$$\le \epsilon n \qquad \text{if } m \ge \left(\frac{n\log n}{\epsilon^2}\right)$$

So for $m \ge (\frac{n \log n}{\epsilon^2})$, we get an ϵ -approximate spectral sparsifier of G.

3.2 Non-complete Graphs

For non-complete graphs, there are two issues that we need to deal with.

- 1. The Laplacian of a non-complete graph need not be spherical. So in order to apply RV lemma, rather than looking at random variables $\{Z_i\}_{i=1}^m$, we look at transformed random variables $\{AZ_i\}_{i=1}^m$ for some matrix A.
- 2. Need to find a better sampling distribution, p_e . For example, in the case of a barbell graph, we need to return the middle edge to get a good sparsifier.

Consider an unweighted graph G. Let $U \in \mathbb{R}^{|E| \times n}$ be matrix representing |E| edges where

$$U = \begin{pmatrix} & \dots & u_1^\mathsf{T} & \dots \\ & \dots & u_2^\mathsf{T} & \dots \\ & \dots & & \\ & \dots & & u_{|E|}^\mathsf{T} & \dots \end{pmatrix}$$

Then the Laplacian for G can be represented as

$$L_G = U^{\mathsf{T}} U$$

 L_G is symmetric since $L_G^{\mathsf{T}} = L_G$. Also we have that $\forall x, x^{\mathsf{T}}L_G x = x^{\mathsf{T}}U^{\mathsf{T}}U x = ||Ux|| \ge 0$ and thus L_G is positive semi-definite. This implies that all eigenvalues of L_G are non-negative. Using the eigenvalue decomposition of L_G , we can express L_G as

$$L_G = \sum_{i=1}^n \lambda_i b_i b_i^{\mathsf{T}}$$

where $\{b_i\}_{i=1}^n$ are orthonormal eigenvectors and $\lambda_i \ge 0$.

Positive powers of L_G can be calculated by

$$L_G^{\ p} = \sum_{i=1}^n \lambda_i^p b_i b_i^{\mathsf{T}}$$

The Moore-Penrose pseudo-inverse of L_G is given by

$$L_G^\dagger = \sum_{\substack{i=1\\\lambda_i\neq 0}}^n \lambda_i^{-1} b_i b_i^\intercal$$

and thus

$$(L_G^{\dagger})^{\frac{1}{2}} = \sum_{\substack{i=1\\\lambda_i \neq 0}}^n \lambda_i^{-1/2} b_i b_i^{\intercal}$$

Using these, we can express the projector onto the span of L_G as

$$\Pi_{L_G} = \sum_{\substack{i=1\\\lambda_i \neq 0}} b_i b_i^{\mathsf{T}} = (L_G^{\dagger})^{\frac{1}{2}^{\mathsf{T}}} L_G^{\frac{1}{2}} = L_G^{\frac{1}{2}} (L_G^{\dagger})^{\frac{1}{2}^{\mathsf{T}}}$$

Note that $\Pi_{L_G}^{\intercal} \Pi_{L_G} = \Pi_{L_G}$.

For H to be a spectral sparsifier of G, we need that

$$x^{\mathsf{T}}L_{H}x = (1 \pm \epsilon)x^{\mathsf{T}}L_{G}x, \quad \forall x$$

$$\Rightarrow x^{\mathsf{T}}L_{H}x = (1 \pm \epsilon)x^{\mathsf{T}}L_{G}x, \quad \forall x \text{ s.t. } x^{T}\mathbf{1} = 0$$

$$\Rightarrow x^{\mathsf{T}}L_{H}x = (1 \pm \epsilon)x^{\mathsf{T}}L_{G}x, \quad \forall x \in \operatorname{span}(L_{G})$$

where the last statement holds when G is a connected graph (because L_G has rank n-1 for a connected graph and $L_G \mathbf{1} = 0$). Thus for any $x \in \text{span}(L_G)$:

$$x = \Pi_{L_G} x = (L_G^{\dagger})^{\frac{1}{2}^{\mathsf{T}}} L_G^{\frac{1}{2}} x = (L_G^{\dagger})^{\frac{1}{2}^{\mathsf{T}}} y$$

where $y = L_G^{\frac{1}{2}} x$. Then the condition becomes:

$$x^{\mathsf{T}}L_{H}x = (1 \pm \epsilon)x^{\mathsf{T}}L_{G}x, \quad \forall x \in \operatorname{span}(L_{G})$$

$$\Leftrightarrow y^{\mathsf{T}}L_{G}^{\dagger\frac{1}{2}}L_{H}L_{G}^{\dagger\frac{1}{2}^{\mathsf{T}}}y = (1 \pm \epsilon)y^{\mathsf{T}}L_{G}^{\dagger\frac{1}{2}}L_{G}L_{G}^{\dagger\frac{1}{2}^{\mathsf{T}}}y$$

$$= (1 \pm \epsilon)y^{\mathsf{T}}L_{G}^{\dagger\frac{1}{2}}L_{G}^{\frac{1}{2}}L_{G}^{\frac{1}{2}}L_{G}^{\dagger\frac{1}{2}}y$$

$$= (1 \pm \epsilon)y^{\mathsf{T}}\Pi_{L_{G}}^{\mathsf{T}}y, \quad \forall y$$

Subtracting $y^{\intercal}\Pi_{L_G}y$ from both sides, we get

$$\begin{aligned} |y^{\mathsf{T}}(L_G^{\dagger^{\frac{1}{2}}}L_HL_G^{\dagger^{\frac{1}{2}^{\mathsf{T}}}} - \Pi_{L_G})y| &\leq \epsilon y^{\mathsf{T}}\Pi_{L_G}y = \epsilon y^{\mathsf{T}}y\\ \Leftrightarrow \|L_G^{\dagger^{\frac{1}{2}}}L_HL_G^{\dagger^{\frac{1}{2}^{\mathsf{T}}}} - \Pi_{L_G}\| &\leq \epsilon\end{aligned}$$

We now apply RV Lemma on random variables $A_i = L_G^{\dagger \frac{1}{2}} Z_i$. Let $\kappa = \max ||A_i||$ and we have:

$$||E[A_{i}A_{i}^{\mathsf{T}}]|| = ||L_{G}^{\dagger^{\frac{1}{2}}}E[Z_{i}Z_{i}^{\mathsf{T}}]L_{G}^{\dagger^{\frac{1}{2}^{\mathsf{T}}}}||$$
$$= ||L_{G}^{\dagger^{\frac{1}{2}}}L_{G}L_{G}^{\dagger^{\frac{1}{2}^{\mathsf{T}}}}||$$
$$= ||\Pi_{L_{G}}||$$
$$\leq 1$$

Applying RV Lemma we get:

$$\|\frac{1}{m}\sum A_{i}A_{i}^{\mathsf{T}} - E[A_{i}A_{i}^{\mathsf{T}}]\| = \|L_{G}^{\dagger \frac{1}{2}}L_{H}L_{G}^{\dagger \frac{1}{2}^{\mathsf{T}}} - \Pi_{L_{G}}\| \le \kappa \sqrt{\frac{\log n}{m}}$$

So if $m \ge (\kappa^2 \log n/\epsilon^2)$, we get a ϵ -approximate sparsifier. Note that we haven't yet defined the probability distribution p_e . κ will depend on the choice of p_e .

To pick a good probability distribution p_e and to compute κ , we appeal to physical intution. Consider the graph to represent nodes on a circuit and let $x \in \mathbb{R}^n$ denote the voltages on each node. The current flow along edge e, denoted by I_e , from u to v is related to the voltage drop. Thus $I_e = x_u - x_v = u_e x$. The flow along all edges is given by I = Ux where $I \in \mathbb{R}^{|E|}$.

Given a battery on the circuit, with x_s and x_t fixed at some voltages, we can calculate the rest of the internal voltages x_v using Kirchoff's Laws:

current into vertex - current out of vertex = external flow

We know that the external flow is: (Δ at $s, -\Delta$ at t, 0 elsewhere)

For node v,

$$(I_{ext})_v = \sum_{e=(u,v)} I_e - \sum_{e=(v,u)} I_e$$
$$= \sum_e I_e(U_e)_v$$
$$= (U^{\mathsf{T}}I)_v$$
$$= (U^{\mathsf{T}}Ux)_v$$
$$= (L_G x)_v$$

We know the external flow and want voltages so we compute $x = L_G^{\dagger} I_{ext}$ where L_G^{\dagger} is the pseudoinverse.

If we set I_{ext} to u_e for some edge (u, v) to indicate that 1 unit of current is pushed from u to v, then $L_G^{\dagger} u_e$ is a vector of all voltages in the circuit and thus $u_e^{\mathsf{T}} L_G^{\dagger} u_e$ is the voltage drop from u to v.

From Ohm's Law, we know that $V = IR_{eff}$ where R_{eff} is the effective resistance. Since we have 1 unit of current, we conclude that $R_{eff} = u_e^{\mathsf{T}} L_G^{\dagger} u_e$.

We use this fact in our calculation of $||A_i||$.

$$\begin{split} \|A_i\|^2 &= A_i^{\mathsf{T}} A_i \\ &= Z_i^{\mathsf{T}} L_G^{\dagger \frac{1}{2}^{\mathsf{T}}} L_G^{\dagger \frac{1}{2}} Z_i \\ &= Z_i^{\mathsf{T}} L_G^{\dagger} Z_i \\ &= \frac{1}{p_e} u_e^{\mathsf{T}} L_G^{\dagger} u_e \\ &= \frac{R_{eff}}{p_e} \end{split}$$

This suggests to set $p_e \propto R_{eff}$ and after normalizing

$$p_e = \frac{R_{eff}(e)}{\sum R_{eff}(e)}$$

Thus $\kappa^2 = \sum R_{eff}(e)$ and we need $m \ge ((\sum R_{eff}(e)) \log n/\epsilon^2)$ to get a ϵ -approximate sparsifier. And finally to compute $\sum R_{eff}(e)$, we use Foster's Theorem.

Theorem 5. Foster's Theorem

Let $R_{eff}(e)$ denote the effective resistance along edge e on a connected graph of n nodes. Then

$$\sum_{e \in E} R_{eff}(e) = n - 1$$

Proof. Define $P = UL_G^{\dagger}U^{\dagger}$. Then

$$P^2 = U L_G^{\dagger} L_G L_G^{\dagger} U^{\dagger} = P$$

Thus P is a projection matrix, and all its eigenvalues $\lambda_i \in \{0, 1\}$. Since L_G has rank n-1 and P has the same rank as L_G , n-1 eigenvalues of P are equal to 1 and the rest are 0. From the definition of effective resistance we have:

$$R_{eff}(e) = u_e^{\mathsf{T}} L_G^{\mathsf{T}} u_e = P_{e,e}$$

$$\Rightarrow \sum R_{eff}(e) = tr(P) = \sum \lambda_i = n - 1$$

Finally, we conclude that we need $m \ge (n \log n/\epsilon^2)$ and complete the proof for non-complete graphs.

References

- [1] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.
- [2] D. A. Spielman and S. Teng. Spectral sparsification of graphs. CoRR, abs/0808.4134, 2008.
- [3] R. Vershynin. Introduction to the non-asymptotic analysis of random matrices, 2010.
- [4] E. W. Weisstein. Foster's theorems. http://mathworld.wolfram.com/FostersTheorems. html.