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1 Overview

This lecture is about Markov Chains, a type of stochastic process where the distribution of the
process at time t depends only on the value of the process at time t− 1.

2 Introduction

Definition 2.0.1 (Markov Chain). A Markov Chain (Xt)t∈N is a sequence of random variables on
some state space S which obeys the following property:

∀t > 0, (si)
t
i=0 ∈ S,P

[
Xt = st

∣∣∣∣∣
t−1⋂
i=0

(Xi = si)

]
= P [X1 = st|X0 = st−1]

We will write these probabilities as a transition matrix P , where Pij = P [X1 = sj |X0 = si]. Note
that ∀i,

∑
j Pij = 1 is necessary for P to be a valid transition matrix.

If q ∈ R|S| is the distribution of X at time 0, the distribution of X at time t will then be qP t.

2.1 Example: Random Walk on a Graph

Let our state space be the vertices of a graph G = (V,E). Then we can define a Markov chain
by a random walk on G, where at each step the walk jumps to a random neighbour of the current
vertex. This gives us the following transition matrix:

Puv =

{
1

d(u) (u, v) ∈ E
0 Otherwise.

3 The Fundamental Theorem of Markov Chains

Definition 3.0.1 (Ergodicity). A Markov Chain is ergodic if ∃Π ∈ R|S| such that:

∀s ∈ S,Πs > 0

lim
t→∞

qP t = Π
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We will call this Π the stationary distribution of X. Note that when it exists, Π is the unique
vector Π ∈ R|S| such that ΠP = Π, with

∑
s∈S Πs = 1 and Πs ∈ [0, 1] for all s.

Theorem 3.0.2 (The Fundamental Theorem of Markov Chains). Let X be a Markov Chain on a
finite state space S = [n] satisfying the following conditions:

Irreducibility There is a path between any two states which will be followed with > 0 probability,
i.e. ∀i, j ∈ [n], ∃tP[Xt = j|X0 = i] > 0.

Aperiodicity Let the period of a pair of states u, v be the GCD of the length of all paths between
them in the Markov chain, i.e. gcd{t ∈ N>0|P[Xt = v|X0 = u] > 0}. X is aperiodic if this is
1 for all u, v.

Then X is ergodic.

Note that both these conditions are necessary as well as sufficient.

3.1 Further Definitions

N(i, t) = |{t ∈ N|Xt = i}|

This obeys limt→∞
N(i,t)

t = Πi for an ergodic chain with stationary distribution Π.

hu,v = E[min
t
{t|Xt = v}|X0 = u]

This is called the hitting time of v from u, and it obeys hi,i = 1
Πi

for an ergodic chain with stationary
distribution Π.

4 Random Walks on Undirected Graphs

We consider a random walk X on a graph G as before, but now with the assumption that G is
undirected.

Clearly, X will be irreducible iff G is connected. It can also be shown that it will be aperiodic iff G
is not bipartite. The ⇒ direction follows from the fact that paths between two sides of a bipartite
graph are always of even length, whereas the⇐ direction follows from the fact that a non-bipartite
graph always contains a cycle of odd length.

We can always make a walk on a connected graph ergodic simply by adding self-loops to one or
more of the vertices.

4.1 Ergodic Random Walks on Undirected Graphs

Theorem 4.1.1. If the random walk X on G is ergodic, then its stationary distribution Π is given
by ∀v ∈ V,Πv = d(v)

2m .
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Proof. Let Π be as defined above. Then:

(ΠP )v =
∑

u,v∈E
Πu

1

d(u)

=
∑

u,u,v∈E

1

2m

=
d(v)

2m
= Πv

So as
∑

v Πv = 2m
2m = 1, Π is the stationary distribution of X.

In general, even on this subset of random walks, the hitting time will not be symmetric, as will be
shown in our next example. So we define the commute time Cu,v = hu,v + hv,u.

4.2 Example: The Lollipop Graph

Figure 1: The Lollipop Graph on 14 Vertices

The lollipop graph on n vertices is a clique of n
2 vertices connected to a path of n

2 vertices. Let
u be any vertex in the clique that does not neighbour a vertex in the path, and v be the vertex
at the end of the path that does not neighbour the clique. Then hu,v = θ(n3) while hv,u = θ(n2).
This is because it takes θ(n) time to go from one vertex in the clique to another, and θ(n2) time to
successfully proceed up the path, but when travelling from u to v the walk will fall back into the
clique θ(1) times as often as it makes it a step along the path to the right, adding an extra factor
of n to the hitting time.

5 Electrical Resistance and Commute Time of a Graph

View graph G as an electrical network with unit resistors as edges. Let Ru,v be the effective
resistance between vertices u and v. The commute time between u and v in a graph is related to
Ru,v by Cu,v = 2mRu,v. We get the following inequalities assuming this relation.

If (u, v) ∈ E,
Ru,v ≤ 1 ∴ Cu,v ≤ 2m

In general, ∀ u, v ∈ V ,
Ru,v ≤ n− 1 ∴ Cu,v ≤ 2m(n− 1) < n3
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We inject d(v) amperes of current into ∀v ∈ V . Subsequently we pick some vertex u ∈ V and
remove 2m current from u leaving net d(u) − 2m current at u. Now we get voltages xv ∀v ∈ V .
Assume we have xv − xu = hv,u ∀v 6= u ∈ V (will prove subsequently). Let L be the Laplacian for
G and D be the degree vector, then we have

Lx = iu = D − 2m1u

∀v ∈ V,
∑

(u,v)∈E

xv − xu = d(v) (1)

5.1 Lollipop Graph

Let us revisit the lollipop graph with the electrical network view and compute hu,v and hv,u with u
and v as before. To compute hu,v. Let u′ be the vertex common to the clique and the path. Clearly,
the path has resistance θ(n). θ(n) current is injected in the path and θ(n2) current is injected in
the clique.

Consider draining current from v. The current in the path is θ(n2) as 2m − 1 = θ(n2) current
is drained from v which enters v through the path implying x′u − xv = θ(n3) using Ohm’s law
(V = IR). Now consider draining current from u instead. The current in the path is now θ(n)
implying xv − x′u = θ(n2) by the same argument.

Since the effective resistance between any edge in the clique is less than 1 and θ(n2) current
is injected, there can be only θ(n2) voltage gap between any 2 vertices in the clique. We get
hu,v = xu − xv = θ(n3) in the former case and hv,u = xv − xu = θ(n2) in the latter.

5.2 Proof of Relation

Define h′v,u = hv,u when v 6= u except h′v,v = 0. By current conversion, ∀u 6= v ∈ V , we have

h′v,u =
∑

(v,w)∈E

1

d(v)
(1 + h′w,u)

h′v,u = 1 +
∑

(v,w)∈E

1

d(v)
h′w,u

d(v) =
∑

(v,w)∈E

h′v,u − h′w,u (2)

Equations 1 and 2 are linear systems with unique solutions and are identical under xv − xu = h′v,u
(up to same additive shift to each entry). xv = h′v,u if xu = 0.

We have shown that for iu = D − 2m1u with x = L+iu that xv − xu = hv,u. For u′, we have
x′ = L+iu′ . Now, we have,

x− x′ = L+(iu − iu′) = 2mL+(eu′ − eu)
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The above is equivalent to 2m times voltage obtained if you inject 1 ampere at u′ and remove 1
ampere from u. Using Kirchoff’s law we get

2mRu,u′ = (x− x′)u′ − (x− x′)u
= (xu′ − xu)− (x′u − x′u′)

= hu′,u + hu,u′ = Cu,u′

6 Cover Time of a Graph

We define Cu(G) as the expected time for a random walk starting at u to visit all vertices in a
graph. C(G) is the maximum of Cu(G) over all u ∈ V .

We have ∀u ∈ V ,
Cu(G) ≤ 2m(n− 1)

Consider the spanning tree T of graph G. The cover time is bounded by traversing the edges of the
tree in both directions (as we could just do a DFS on the spanning tree), and hitting time gives
the expected time of moving along an edge, we get

Cu(G) ≤
∑

(u,v)∈E(T )

hu,v + hv,u

=
∑

(u,v)∈E(T )

Cu,v

≤ (n− 1) max
u

Cu,v

≤ 2m(n− 1)

This above inequality is tight for lollipop (θ(n3)) but not for cliques which has O(n log n) as we
can model it as a coupon collector problem.

Let Rmax = maxu,v∈V Ru,v. We give a tighter bound without proof on C(G) as follows:

mRmax ≤ C(G) . mRmax log n
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