
CS 388R: Randomized Algorithms Fall 2015

Lecture 4 — Sep 9, 2015

Prof. Eric Price Scribe: Xiangru Huang & Chad Voegele

1 Overview

In previous lectures, we introduced some basic probability, the Chernoff bound, the coupon collector
problem, and game tree evaluation.

In this lecture, we will introduce concentration inequalities.

2 Coupon Collector Problem

Draw numbers (coupons) independently from [n] = {1, 2, . . . , n}. How long does it take to see all
of the numbers?

Suppose Ti is the number of draws to get the i-th new number. Let T =
∑

i Ti.

Fact 1. The Ti’s are independent of each other.

Fact 2. Ti follows geometric distribution with success probability, p = n+1−i
n .

Fact 3. If X ∼ Geometric(p),

E[X] = p · 1 + (1− p) · (E[X|X ≥ 2])

= p+ (1− p)(1 + E[X])

⇒ E[X] =
1

p

E[X2] = p · 12 + (1− p) · E[X2|X ≥ 2]

= p+ (1− p)E[(X + 1)2]

= p+ (1− p)(E[X2] + 2E[X] + 1)

= p+ (1− p)E[X2] + 2(1− p)/p+ (1− p)

⇒ E[X2] =
2− p
p2

V ar(X) = E[(X − E(X))2] = E[X2]− (E[X])2

⇒ V ar(X) =
1− p
p2
≤ 1

p2
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Therefore in the Coupon Collector Problem,

E[T ] =
n∑
i=1

E[Ti] =
n∑
i=1

n

n+ 1− i
= nHn ≈ n log n

V ar[Ti] ≤
1

p2i
=

(
n

n+ 1− i

)2

⇒ V ar[T ] =
n∑
i=1

V ar[Ti] ≤ n2
(

n∑
i=1

1

i2

)
≤ n2 · π

2

6
= O(n2)

3 Concentration Inequalities

∀i, Pr[Ti ≥ 1 + α] ≤
(

1− n+ 1− i
n

)α
Assume δ is some failure probability. Setting αi =

(
n

n+1−i

)
log n

δ and because (1 − 1
x)x < 1

e , we

have

∀i, Pr[Ti ≥ 1 + αi] ≤
δ

n

Definition 4. Union Bound

Pr[X1 ∪X2 ∪ . . . ∪Xn] ≤
∑
i

Pr[Xi]

Using a union bound, we have

Pr
[
T ≥ n+ n log n log

n

δ

]
= Pr

[∑
i

Ti ≥ n+
∑
i

αi

]
= Pr[T1 ≥ 1 + α1 ∪ . . . ∪ Tn ≥ 1 + αn]

≤
∑
i

Pr[Ti ≥ 1 + αi]

≤ δ

Definition 5. With High Probability (w.h.p.)

X ≤ O(y) w.h.p. ⇔ ∀c2, ∃c1, s.t. Pr[X ≤ c1y] ≤ n−c2

T = O(n log2 n) with high probability.
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3.1 Markov’s Inequality

For a non-negative random variable T and any non-negative α,

E[T ] ≥ Pr[T ≥ α] · α

⇒ Pr[T ≥ α] ≤ E[T ]

α

In the Coupon Collector Problem,

α =
E[T ]

δ
=
nHn

δ

⇒ Pr

[
T ≥ nHn

δ

]
≤ δ

3.2 Chebyshev’s Inequality

For a random variable, X, let µ = E[X] denote the expectation and σ2 = V ar[X] denote the
variance. Starting from Markov’s Inequality, we find

Pr[(X − µ)2 ≥ α2] ≤ E[(X − µ)]2

α2
=
σ2

α2

Setting α→ ασ

Pr[(X − µ)2 ≥ α2σ2] ≤ 1

α2

Taking the square root, we find

Pr[X ≥ µ+ ασ] ≤ 1

α2

Pr[X ≤ µ− ασ] ≤ 1

α2

Using this result in the Coupon Collector Problem, gives us

Pr[T ≥ nHn +
1√
δ
O(n)] ≤ δ

Setting δ = 1
log2n

Pr[T ≥ nHn +O(n log n)] ≤ O
(

1

log2n

)
Most of the time, the typical deviation is O(σ).

Pr[|x− µ| ≤ O(σ)] ≈ 1− δ
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3.3 Moment Method

If f is non-negative, by Markov’s inequality,

Pr[f(X − µ) ≥ f(α)] ≤ E[f(X − µ)]

f(α)

For f increasing,

Pr[X − µ ≥ α] ≤ E[f(X − µ)]

f(α)

Set f = |t|k,

Pr[|X − µ|k ≥ |α|k] ≤ E[|x− µ|k]
|α|k

For one side,

Pr[X ≥ µ+ α] ≤ E[|x− µ|k]
|α|k

Setting δ = E[|x−µ|k]
|α|k , we have

Pr

[
X ≤ µ+ E[|x− µ|k]1/k ·

(
1

δ

)1/k
]
≥ 1− δ

If we consider X ∼ N(0, σ2), we know

E[|x|k] ≈ (kσ2)k/2 ∀k > 0

which means

Pr

[
X ≥ µ+O

(
√
k · σ ·

(
1

δ

)1/k
)]
≤ δ

Setting k = log 1
δ , we get

Pr

[
X ≥ µ+O

(√
log

1

δ

)]
≤ δ

3.4 Moment Generating Function

Definition 6. The moment generating function, parameterized by λ, is defined as

MGFX(λ) = E[eλ(X−µ)]

Assume X is centered (E[X] = 0).

eλx = 1 + λx+
(λx)2

2
+

(λx)3

3!
+ . . .+

(λx)k

k!

We can use parameter λ to adjust the weights on each term. When λ is larger, more weight is on
higher order terms.
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From the derivation of the Moment Method, setting f(x) = eλx,

Pr[X ≥ µ+ α] ≤ MGFX(λ)

eλα

Fact 7. If X ∼ N(0, σ2), MGFX(λ) = E[eλx] ≤ eλ2σ2 ∀ λ ∈ R

Using this,

Pr[X ≥ µ+ α] ≤ MGFx(λ)

eλα

= e
λ2σ2

2
−λα

= e
1
2(λσ−ασ )

2− α2

2σ2

Set λ = α
σ2 , we get

Pr[X ≥ µ+ α] ≤ e−
α2

2σ2

If δ = e−
α2

2σ2 , we have

α = σ

√
2log

1

δ

Note that this is the same O
(√

log 1
δ

)
bound as we found in the method of moments, except that

now we know the constant.

3.5 Subgaussian Variables

Claim 8. The following three statements are equivalent if we only care up to a constant for σ (i.e.
∀i, j ∈ {1, 2, 3}, σi = θ(σj))

X is subgaussian with parameter σ, i.e. ∀λ ∈ R, MGFX(λ) ≤ e
λ2σ21

2 (1)

Pr[X ≥ µ+ t] ≤ e
− t2

2σ22 (2)

E[|x|k]1/k ≤ O
(
σ3
√
k
)

(3)

Fact 9. The sum of subgaussian variables are subgaussian.

X = X1 + . . .+Xn

MGFX(λ) = E
[
eλX

]
= E

[
eλ(

∑
i xi)
]

= E

[∏
i

eλxi

]
=
∏
i

E
[
eλxi

]
(by independence)

=
∏
i

MGFXi(λ)

≤
∏
i

eλ
2σ2
i /2 (by subgaussian)

= e
λ2

2
(
∑
i σ

2
i )
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This implies X is subgaussian with parameter
√∑

i σ
2
i .

Fact 10. If X ∈ [0, 1], then X is subgaussian with σ = 1/2 by Hoeffding’s Lemma.1

Let X =
∑

iXi where Xi ∈ [0, 1]. X is subgaussian with σ =
√
n/2. Plug this into (2), we have

Pr[x ≥ µ+ α] ≤ e−
2α2

n

which is exactly the Chernoff bound.

4 Next Class

In the Coupon Collector Problem, we had

Pr[Tn ≥ α] ≤
(

1− 1

n

)α
≈ e−α

This is not of the form e−α
2

so we cannot use the subgaussian results. We will relax the subgaussian
requirement to subexponential and subgamma. This will lead to Bernstein’s inequality.

MGFX(λ) = E[eλX ] ≤ e
λ2σ2

2 ∀ |λ| ≤ B
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