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1 Overview

In the last lecture we introduced coupon collector problem, concentration in equalities, subguassian
random variables and their basic properties.

In this lecture we will see these properties are equivalent up to a scaling factor and introduce
subexponential and subgamma random variables.

2 Starter Problem

2.1

Question: Suppose x is drawn from an unknown distribution with mean µ and variance σ2.
How many samples do we need to estimate µ± εσ with probability ≥ 1− δ?

One solution: Let x̄ :=
∑
xi
n . Then

Var[x̄] =
σ2

n
(1)

E[x̄] = µ (2)

By Chebyshev inequality,

P(|x̄− µ| ≥ α σ√
n

) ≤ 1

α2
.

Let δ = 1
α2 , and we conclude that

n ≥ 1

δε2

2.2 Is this bound tight?

Let’s look at an example. Suppose x ∈ {0, 1} with P(x = 1) = p = 1
10n2 . Then we have

σ =
√
p(1− p) ≈ √p < 1

3n
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If any of the sample is 1, the empirical mean∑
xi
n
≥ 1

n
≥ 1

10n2
+

1

3n
> µ+ σ

The probability that any sample is 1 is

P(any sample = 1) = 1− (1− p)n ≈ pn =
1

10n

In this case, 1
δ is tight.

2.3 Can we do better?

How about median? How far can median of x be from mean of x (in terms of σ)? By
Chebyshev inequality, we have

P[|x− µ| ≥
√

2σ] ≤ 1

2
.

This means more than half of the samples fall into the ±
√

2σ range, and so does the median.

How many samples do we need if we use median? Let

Yi =

{
1 if |xi − µ| ≤ 2σ

0 if |xi − µ| ≥ 2σ

By Chebyshev’s inequality we get P[Yi = 1] ≥ 3
4 . Note that if

∑
Yi ≥ n

2 , |median(xi)− µ| ≤ 2σ.

P
(∑

Yi ≥
n

2

)
≥ 1− P

(∑
Y i ≤ E[

∑
Yi]−

n

4

)
≥ 1− e−

2(n4 )2

n

= 1− e−
n
8

We thus need only

n = 8 log
1

δ

samples to get an estimation within µ±O(σ) with probability 1− δ.

Combining mean and median: Suppose we divide the samples into S1, S2, . . . , Sm buckets.
For each bucket, we have mean(Si) = µ and standard deviation σSi = σ√

|Si|
. Let |Si| = 4

ε2
, we

get σsi = εσ
2 . If we take median of m = 8 log 1

δ bucket means, according to Section ??, we get
estimation within ±εσ. Overall we need only

|Si| ∗m =
4

ε2
∗ 8 log

1

δ
= 32

1

ε2
log

1

δ

samples.
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3 Subgaussian random variables

Recall in last class we see x is subguassian with parameter σ if any of following holds.

1. E[eλx] ≤ e
λ2σ2

2

2. P[|x| ≥ t] ≤ 2e−
t2

2σ2

3. E[|X|k]
1
k ≤ σ

√
k

In fact, these three are equivalent up to scaling σ by a constant.

3.1 Proof (1) ⇒ (2)

Pr[X ≥ t] = P[eλx ≥ eλt]

≤ E[eλx]

eλt

≤ e
λ2σ2

2
−λt

= e
−t2
2σ2

The inequality is by Markov’s inequality, and the last equality is obtained by choosing λ = t
σ2 .

3.2 Proof (2) ⇒ (3)

Let z = |x|k and assume σ = 1√
2
,

E(z) =

∫ ∞
0

P(z ≥ µ)dµ, ∀z ≥ 0. (3)

P
(
|x|k ≥ tk

)
= P (|x| ≥ t) (4)

≤ 2e−t
2

(5)

E(|x|k) ≤
∫ ∞
0

2e−t
2
ktk−1dt (6)

Equation ?? is by Chernoff bound, and Equation ?? is obtained by combining Equation ?? and
Equation ??. After some integration by parts, we can get

E(|x|k) ≤ 2(
k

2
)!

≤ 2(
k

2
)
k
2
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3.2.1 Proof (3) ⇒ (1)

By Taylor expansion,

eλx = 1 + λx+
λ2x2

2
+ . . .

E[eλx] ≤ 1 +
∞∑
k=2

λk(ck)
k
2

k!

≤ 1 +
∞∑
k=2

(
λ2cke2

k2
)
k
2

≤ 1 +
∞∑
k=2

(
λ2e

k
)
k
2

Here we use the fact k! ≥
(
k
e

)k
for σ = O(1)

eλ
2σ2

= 1 +
∞∑
k=1

(λ2σ2)k

k!

≥ 1 +
∞∑
k=1

(
λ2σ2

k
)k

= 1 +
∑
k∈2N

(
2λ2σ2

k
)
k
2

for σ = Ω(1) we have all even terms

(

√
eλ√
k

)k ≤ (

√
eλ√
k

)k−1 + (

√
eλ√
k

)k+1

≤ (

√
eλ√
k − 1

)k−1 + (

√
eλ√
k + 1

)k+1(

√
k + 1

k
)k+1

3.3 Subexponential random variables

Random variable x is subexponential with parameter σ if one of the following holds:

1. E[eλx] ≤ e
λ2σ2

2 ,∀|λ| ≤ 1
σ

2. Pr[|x| ≥ t] ≤ 2e−
t
2σ

3. E[|X|k]
1
k ≤ σk
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3.4 Subgamma random variables

Here we state some of the properties of subgamma random variables without proof. Random vari-
able x is subgamma(σ,B) if

E[eλx] ≤ e
λ2σ2

2 , ∀|λ| ≤ B

or equivalently,

P[|x| ≥ t] ≤

{
2e−

t2

σ2 , if |t|
σ2 ≤ B

e
1
2
B2σ2−Bt ≤ e−

Bt
2 , otherwise

(7)

Combining the two cases:

P[|x| ≥ t] ≤ max(2e−
t2

σ2 , 2e−
Bt
2 )

Suppose xi are subgamma(σi, βi). Then
∑
xi is subgamma(

√∑
σ2i ,min(Bi)).
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