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Prof. Eric Price Scribe: Manu Agarwal, Surbhi Goel

1 Overview

In the last lecture we computed the expected number of missing coupons after collecting n coupons
as

E [#missing] =

(
1−O

(
1

n

))
n

e

Since the variables were no longer independent, we questioned whether they concentrate. Using
the intuition that the probability of finding a new coupon having previously found another coupon
should be lower, ideally they should concentrate better than if they were independent.

In this lecture we discuss the concept of Negative Association to help us prove concentration
properties for variables such as the above mentioned. We also discuss the properties a set of
variables must satisfy to be negatively associated and see some examples of such set of variables.
We end with a brief analysis of the Balls in Bins problem.

2 Negative Association

2.1 Definition

Let X = {X1 . . . Xn}. When is X said to be negatively associated?

One possible definition could be as follows:

Definition 2.1.1. X is negatively correlated if

E [XiXj ] ≤ E [Xi]E [Xj ] ∀i, j ∈ [n] (1)

Unfortunately, this does not lead to good concentration properties, so let’s try to find a better
definition. What would we like our definition to have?

• It should hold for both the discrete as well as the continuous case.

• Xi’s should concentrate as well as if they were independent.

• Subsets of negatively associated variables should also be negatively associated.

• It should hold good for independent variables.

• It should be easy to prove.
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• It should also satisfy composition rules.

Note that the first definition is not too strong for it to satisfy all the desired properties. Hence, we
propose the following definition of negative association:

Definition 2.1.2. X is negatively associated (NA) if ∀I, J ⊂ [n] that are disjoint and ∀ monotonic
f, g (both increasing or both decreasing),

E [f(XI)g(XJ)] ≤ E [f(XI)]E [g(XJ)] (2)

where XI , XJ are subsets of X indexed by I, J respectively.

2.2 Example

Suppose X = {X1, . . . , Xn} is negatively associated and each Xi is σi subgaussian. We show that

Z =
∑n

i=1Xi is
√∑n

i=1 σ
2
i subgaussian. To do so, we prove the first property of subgaussians. We

have,

E
[
eλZ
]

= E
[
eλ(X1+...+Xn)

]
= E

[
eλXneλ(X1+...+Xn−1)

]
≤ E

[
eλXn

]
E
[
eλ(X1+...+Xn−1)

]
≤

n∏
i=1

E
[
eλXi

]
≤

n∏
i=1

e
λ2σ2i

2

= e
λ2

∑n
i=1 σ

2
i

2

Here, the first inequality follows from the definition of NA variables with f(x) = g(x) = eλx (both
f, g are both monotonically increasing), second follows by inducting the previous inequality, and
third follows from the subgaussian property of each Xi. Thus, Z is also subgaussian with parameter√∑n

i=1 σ
2
i .

2.3 Properties

Property 2.3.1. If X = {X1, . . . , Xn} is NA and Y = {Y1, . . . , Yn} is NA independent of X, then
{X1, . . . , Xn, Y1, . . . , Yn} is NA.

Property 2.3.2. Let I1, . . . , Im ⊂ [n] be disjoint and f1, . . . , fn be all monotonically increasing or
decreasing functions. If X = {Xi, . . . , Xn} is NA then Y = {Yi = fi(XIi)} is NA.

For example, consider a matrix of NA variables X of size m × n. Let Zi = maxj Xij . Since max
is a monotonically increasing function and the rows form disjoint subsets of the variables in the
matrix, by property 2.3.2 Z = {Z1, . . . , Zm} is NA.
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2.4 Zero-One Rule

Rule 2.4.1. If X1, X2, . . . , Xn ∈ {0, 1} and
∑
Xi = 1, then X is NA.

Proof. Let f, g be monotonic and I, J ⊂ [n] be disjoint. Without loss of generality, assume f(~0) = 0
and g(~0) = 0 (we can subtract a constant (value at 0) from each value to get the same). This means
either f(X) ≥ 0 and g(X) ≥ 0 simultaneously or f(X) ≤ 0 and g(X) ≤ 0 simultaneously. Also,

E [f(XI)g(XJ)] = 0 ≤ E [f(XI)]E [g(XJ)]

The equality follows from the fact that one of the vectors XI and XJ must be zero (since each Xi

i either 0 or 1 and the sum is 1, only one of the Xis is 1 rest 0).

Let α1, α2, . . . , αn be constants and let σ1, σ2, . . . , σn ∈ [n] be distinct and uniformly chosen. Then,
Xi = ασi is negatively associated. This requires a more involved proof but the intuition is that if
one set has larger number than the other will have smaller numbers since the numbers belong to
[n].

3 Coupon Collector Revisited

Let’s get back to the question we started with. We sample n coupons from [n]. How many are
missing after this sampling?

Let Xt,i be the event that the coupon sampled at t is i, Then we have Xt = {Xt,1, . . . , Xt,n} is NA
by rule 2.4.1 (zero-one rule) since only one of the Xt,i is one and the remaining 0. Since Xt are
independent, by property 2.3.1 we have that the matrix X formed by having rows Xt is NA.

Now, let Yi =
∑

tXt,i, that is, the number of times we sample coupon i. Since the columns of X
are disjoint and summation of non-negative values is monotonically increasing, the set of Yi’s is NA
by property 2.3.2.

Finally, we want to find the number of coupons missing so we define Zi = (Yi ≥ 1), that is, Zi is 0
if coupon i is missing after the sampling and 1 otherwise. It is easy to see that the set of Zi is NA.
This implies that

∑n
i=1 Zi concentrate as well as if they were independent.

We have,

Pr[Zi = 1] = 1−
(

1− 1

n

)n
= 1− 1

e
+O

(
1

n

)
This implies that E[Zi] = 1− 1

e +O
(

1
n

)
and E [

∑n
i=1 Zi] = n

(
1− 1

e

)
+O(1). Now using Chernoff’s

inequality with t = n
(

1
2 −

1
e

)
, we get

Pr

[
n∑
i=1

Zi ≤
n

2

]
= Pr

[
n∑
i=1

Zi ≤ E

[
n∑
i=1

Zi

]
− n

(
1

2
− 1

e

)]

≤ e−
2(n( 1

2− 1
e))

2

n = e−Ω(n)

Thus, with high probability we have found more than half the coupons in the sampling.
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4 Balls in Bins

We throw n balls into n bins. Let Xi denote the number of balls in bin i. We have E[Xi] = 1 and

Pr [Xi = k] =

(
n

k

)(
1

n

)k (
1− 1

n

)n−k
Using the fact that

(
1− 1

n

)n−k
< 1, we have

Pr [Xi = k] <

(
n

k

)(
1

n

)k
We know that

(
n
k

)
≤
(
n
k

)
≤
(
en
k

)k
. Substituting the same, we get

Pr [Xi = k] ≤
(en
k

)k ( 1

n

)k
=
( e
k

)k
We want to bound this probability by some small value in terms of n, say we want Pr[Xi ≥ k] < 1

n10

E[max
i
Xi] = E[max

i
Xi|max

i
Xi < k]Pr[max

i
Xi < k]

+ E[max
i
Xi|max

i
Xi ≥ k]Pr[max

i
Xi ≥ k]

≤ k.1 + n.
1

n10

= k +
1

n9

Now, we want ( e
k

)k
<

1

n11

e−k log k+k < e−11 logn

k log k − k > 11 log n

It is easy to see by substituting that

2
√

log n < k < log n

Taking log both sides, we have

1

2
log log n < log k < log logn

This means

log k ∈ (
1

2
log log n, log log n)

In other words,

k = Θ(
log n

log log n
)

The last equation follows since k log k − k > 11 log n. We ignore the k, so we get k log k > 11 log n
or k > 11 logn

log k .
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