
CS 388R: Randomized Algorithms Fall 2015

Lecture 9 - Sep. 28, 2015

Prof. Eric Price Scribe: Tianyang Li

1 Overview

In the last lecture we talked about “The Power of Two Choices”.

In this lecture we will continue, and talk about cuckoo hashing.

2 The Power of Two Choices

• one choice: Θ(logn
log logn) max load

• two choices: Θ(log log n)

The proof is by induction.

Vi(t) = number of bins at height ≥ i after t balls (1)

Vi(t) ≤ βin w.h.p. (2)

β4 =
1

4
(3)

βi+1 = 2β2
i (4)

Yt = 1 if ball was placed at height i+ 1 and Vi(t+ 1) ≤ βin (5)

⇒ Yt is stochastically dominated by

Zt ∼ {0, 1} i.i.d. pr. β2
i (6)

∑
Yt ≤

∑
Zt (7)

E[
∑

Zt] = β2
i n =

βi+1n

2
(8)

If βi+1 ≥ C log n for sufficiently large C, we have

P[
∑

Zt ≥ βi+1n] ≤ e−Ω(βi+1n) ≤ O(
1

nc
) (9)

1

Ei = event that
∑

Yt ≥ βi+1n (10)

P[Ei] < n−10 (11)

Qi = event that Vi(t) ≤ βin (12)

P[Q4] = 1 (13)

P[Q̄i+1|Qi] ≤ P[Ei|Qi] (14)

⇒ P[Q̄i] ≤ n−9 (15)

⇒ P[any Q̄i] ≤ n−8 (16)

The above analysis works until βin ≤ C log n, which corresponds to i∗ = Θ(log log n). We will
analyze this case in the next lecture.

3 Cuckoo hashing

“Hash each element to two points”:

• n vertices (bins)

• m edges (balls)

The analysis uses Erdos-Renyi graphs.

• store each element in one of the locations

• each location stores at most 1 element ⇒ O(1) lookup, insertion is O(1) expected

P[given length k cycle exists · · · → i1 → i2 → · · · → ik → i1 → · · ·] ≤ (
O(m)

n2
)k (17)

P[edge e exists] ≤ m(
n
2

) = O(
m

n2
) = O(

1

n
) (18)

P[any length k cycle exists] ≤ nk(O(m)

n2
)k = (O(

m

n
))k ≤ 1

100k
if n ≥ 100m (19)

⇒ P[any cycle exists] ≤ 1
99 , 98

99 probability that no cycle exists for n = O(m).

If a cycle is encountered during insertion, re-hash, rebuild the hash table. E[number of times we rebuild] =
O(1).

2

E[time to build] =
m∑
i=1

E[time to insert ith element]

≤ m · E[size of component of any element]

≤ 2m · E[size of component of a vertex]

= O(m)

This follows from a bound on the expected size of a component in an Erdos-Renyi graph G(n, p)
with n vertices and probability p.

f(n, p) = E[size of component in G(n, p)]

≤ 1 + p · (n− 1) · f(n− 1, p)

≤ 1 + np+ (np)2 + · · ·

≤ 1

1− np

References

[MU05] Michael Mitzenmacher, Eli Upfal. Probability and Computing: Randomized Algorithms
and Probabilistic Analysis Cambridge University Press, 2005.

[PR01] Rasmus Pagh, Flemming Friche Rodler. Cuckoo hashing Journal of Algorithms, 51 (2004)
122-144.

3

