CS 388R: Randomized Algorithms

Fall 2015

Lecture 9 - Sep. 28, 2015

Prof. Eric Price

Scribe: Tianyang Li

1 Overview

In the last lecture we talked about "The Power of Two Choices".

In this lecture we will continue, and talk about cuckoo hashing.

2 The Power of Two Choices

 \bullet one choice: $\Theta(\frac{\log n}{\log\log n})$ max load

• two choices: $\Theta(\log \log n)$

The proof is by induction.

$$V_i(t) = \text{number of bins at height } \ge i \text{ after } t \text{ balls}$$
 (1)

$$V_i(t) \le \beta_i n \text{ w.h.p.}$$
 (2)

$$\beta_4 = \frac{1}{4} \tag{3}$$

$$\beta_{i+1} = 2\beta_i^2 \tag{4}$$

$$Y_t = 1$$
 if ball was placed at height $i + 1$ and $V_i(t + 1) \le \beta_i n$ (5)

 $\Rightarrow Y_t$ is stochastically dominated by

$$Z_t \sim \{0, 1\} \text{ i.i.d. pr. } \beta_i^2$$
 (6)

$$\sum Y_t \le \sum Z_t \tag{7}$$

$$\mathbb{E}[\sum Z_t] = \beta_i^2 n = \frac{\beta_{i+1} n}{2} \tag{8}$$

If $\beta_{i+1} \geq C \log n$ for sufficiently large C, we have

$$\mathbb{P}\left[\sum Z_t \ge \beta_{i+1} n\right] \le e^{-\Omega(\beta_{i+1} n)} \le O\left(\frac{1}{n^c}\right) \tag{9}$$

$$E_i = \text{event that } \sum Y_t \ge \beta_{i+1} n$$
 (10)

$$\mathbb{P}[E_i] < n^{-10} \tag{11}$$

$$Q_i = \text{event that } V_i(t) \le \beta_i n$$
 (12)

$$\mathbb{P}[Q_4] = 1 \tag{13}$$

$$\mathbb{P}[\bar{Q}_{i+1}|Q_i] \le \mathbb{P}[E_i|Q_i] \tag{14}$$

$$\Rightarrow \mathbb{P}[\bar{Q}_i] \le n^{-9} \tag{15}$$

$$\Rightarrow \mathbb{P}[\text{any } \bar{Q}_i] \le n^{-8} \tag{16}$$

The above analysis works until $\beta_i n \leq C \log n$, which corresponds to $i^* = \Theta(\log \log n)$. We will analyze this case in the next lecture.

3 Cuckoo hashing

"Hash each element to two points":

- n vertices (bins)
- m edges (balls)

The analysis uses Erdos-Renyi graphs.

- store each element in one of the locations
- each location stores at most 1 element $\Rightarrow O(1)$ lookup, insertion is O(1) expected

$$\mathbb{P}[\text{given length } k \text{ cycle exists} \cdots \to i_1 \to i_2 \to \cdots \to i_k \to i_1 \to \cdots] \le \left(\frac{O(m)}{n^2}\right)^k \tag{17}$$

$$\mathbb{P}[\text{edge } e \text{ exists}] \le \frac{m}{\binom{n}{2}} = O(\frac{m}{n^2}) = O(\frac{1}{n}) \tag{18}$$

$$\mathbb{P}[\text{any length } k \text{ cycle exists}] \le n^k \left(\frac{O(m)}{n^2}\right)^k = \left(O\left(\frac{m}{n}\right)\right)^k \le \frac{1}{100^k} \text{ if } n \ge 100m \tag{19}$$

 $\Rightarrow \mathbb{P}[\text{any cycle exists}] \leq \frac{1}{99}, \frac{98}{99} \text{ probability that no cycle exists for } n = O(m).$

If a cycle is encountered during insertion, re-hash, rebuild the hash table. $\mathbb{E}[\text{number of times we rebuild}] = O(1)$.

$$\mathbb{E}[\text{time to build}] = \sum_{i=1}^{m} \mathbb{E}[\text{time to insert } i^{\text{th}} \text{ element}]$$

$$\leq m \cdot \mathbb{E}[\text{size of component of any element}]$$

$$\leq 2m \cdot \mathbb{E}[\text{size of component of a vertex}]$$

$$= O(m)$$

This follows from a bound on the expected size of a component in an Erdos-Renyi graph G(n, p) with n vertices and probability p.

$$f(n,p) = \mathbb{E}[\text{size of component in } G(n,p)]$$

$$\leq 1 + p \cdot (n-1) \cdot f(n-1,p)$$

$$\leq 1 + np + (np)^2 + \cdots$$

$$\leq \frac{1}{1 - np}$$

References

[MU05] Michael Mitzenmacher, Eli Upfal. Probability and Computing: Randomized Algorithms and Probabilistic Analysis Cambridge University Press, 2005.

[PR01] Rasmus Pagh, Flemming Friche Rodler. Cuckoo hashing *Journal of Algorithms*, 51 (2004) 122-144.