
Problem Set 1

Randomized Algorithms

Due Wednesday, September 16

1. Consider an optimization problem Opt(x) : X → {0, 1, . . . , n− 1} that
associates inputs from some domain with outputs (e.g., min cut is such
a problem).

Suppose that we have a BPP algorithm A that takes T time to answer
binary queries of whether Opt(x) is less than some threshold. That is,
it answers queries of the form Less(x, k) := (Opt(x) < k), with error
probability at most 1/4.

We saw in class that we can then solve Opt(x) in O(T log n log log n)
time with 3/4 probability, by amplifying the probability and doing
binary search. The goal of this problem is to improve this.

(a) Consider the function RobustBisect(x, L,H) that has three out-
puts:

• LOW if L ≤ Opt(x) < L+H
2

.

• HIGH if L+H
2
≤ Opt(x) < H.

• OUTOFRANGE if Opt(x) /∈ [L,H).

UseA to construct a randomized algorithm B to solve RobustBisect
with 3/4 probability and O(T) time.

(b) Construct a strategy for calling B such that, once B is correct at
least log n more times than it is incorrect, you can output Opt(x)
correctly.

(c) Conclude that one can solve Opt(x) in O(T log n) time with high
probability (which means 1 − 1/nc probability for an arbitrarily
large constant c).

1

2. [Karger] Suppose we have access to a source of unbiased random bits.
This problem looks at constructing biased coins or dice from this source.

(a) Show how to construct a biased coin, which is 1 with probability
p and 0 otherwise, using O(1) random bits in expectation. [Hint:
First show how to construct a biased coin using an arbitrary num-
ber of random bits. Then show that the expected number of bits
examined is small.]

(b) Show how to sample from [n], with probabilities p1, . . . , pn, using
O(log n) random bits in expectation.

(c) Show that the “in expectation” caveat is necessary: for example,
one cannot sample uniformly over {1, 2, 3} using O(1) bits in the
worst case.

3. [MR 1.8]. Consider adapting the min-cut algorithm of Section 1.1 to
the problem of finding an s–t min-cut in an undirected graph. In this
problem, we are given an undirected graph G together with two distin-
guished vertices s and t. An s–t min-cut is a set of edges whose removal
disconnects s from t; we seek an edge set of minimum cardinality. As
the algorithm proceeds, the vertex s may get amalgamated into a new
vertex as the result of an edge being contracted; we call this vertex the
s-vertex (initially s itself). Similarly, we have a t-vertex. As we run
the contraction algorithm, we ensure that we never contract an edge
between the s-vertex and the t-vertex.

(a) Show that there are graphs (not multi-graphs) in which the prob-
ability that this algorithm finds an s–t min-cut is exponentially
small.

(b) How large can the number of s–t min-cuts in an instance be?

4. [MR 2.3]. Consider a uniform rooted tree of height h (every leaf is
at distance h from the root). The root, as well as any internal node,
has 3 children. Each leaf has a boolean value associated with it. Each
internal node returns the value returned by the majority of its children.
The evaluation problem consists of determining the value of the root;
at each step, an algorithm can choose one leaf whose value it wishes to
read.

2

(a) Show that for any deterministic algorithm, there is an instance
(a set of boolean values for the leaves) that forces it to read all
n = 3h leaves.

(b) Show that there is a nondeterministic algorithm can determine
the value of the tree by reading at most nlog3 2 leaves. In other
words, prove that one can present a set of this many leaves from
which the tree value can be determined.

(c) Consider the recursive randomized algorithm that evaluates two
subtrees of the root chosen at random. If the values returned
disagree, it proceeds to evaluate the third sub-tree. Show the
expected number of leaves read by the algorithm on any instance
is at most n0.9.

5. The Python programming language uses hash tables (or “dictionaries”)
internally in many places. Until 2012, however, the hash function was
not randomized: keys that collided in one Python program would do
so for every other program. To avoid denial of service attacks, Python
implemented hash randomization—but there was an issue with the ini-
tial implementation. Also, in python 2, hash randomization is still not
the default: one must enable it with the -R flag.

Find a 64-bit machine with both Python 2.7 and Python 3.4; one is
available at linux.cs.utexas.edu.

(a) First, let’s look at the behavior of hash(“a”)−hash(“b”) over n =
2000 different initializations. If hash were pairwise independent
over the range (64-bit integers, on a 64-bit machine), how many
times should we see the same value appear?

(b) How many times do we see the same value appear, for three differ-
ent instantiations of python: (I) no randomization (python2), (II)
python 2’s hash randomization (python2 -R), and (III) python 3’s
hash randomization (python3)?

If you have trouble coding this on your own, the following snippet
lets you get the answer:

for i in `seq 1 2000`; do

python2 -R -c 'print((hash("a")-hash("b")))';

done | sort | uniq -c | awk '{print $1}' | sort -n | uniq -c

3

(c) What might be going on here? Roughly how many “different”
hash functions does this suggest that each version has?

(d) The above suggests that Python 2’s hash randomization is bro-
ken, but does not yet demonstrate a practical issue. Let’s show
that large collision probabilities happen. Observe that the strings
“8177111679642921702” and “6826764379386829346” hash to the
same value in non-randomized python 2.

Check how often those two keys hash to the same value under
python2 -R. What fraction of runs do they collide? Run it enough
times to estimate the fraction to within 20% multiplicative error,
with good probability.

How could an attacker use this behavior to denial of service attack
a website?

(e) (Optional) Find other pairs of inputs that collide.

4

