Problem Set 2

Randomized Algorithms

Due Wednesday, September 30

- 1. [Wainwright.] Let $X_1, \ldots, X_n \sim N(0, 1)$ for some $n \geq 10$, and let $Z = \max_i X_i$.
 - (a) Show that

$$\frac{1}{2} \le \frac{\mathbb{E}[Z]}{\sqrt{\log n}} \le 3$$

(b) Show that

$$\frac{\mathbb{E}[Z]}{\sqrt{2\log n}} = 1 - o(1)$$

as $n \to \infty$.

- 2. [Wainwright.] Let X_1 and X_2 be zero-mean subgaussians with parameters σ_1 and σ_2 , respectively.
 - (a) Show that if X_1 and X_2 are independent, then X_1X_2 is subgamma. What are the parameters in terms of σ_1 and σ_2 ?
 - (b) Show that in general, without assuming independence, $X_1 + X_2$ is subgaussians with parameter $2\sqrt{\sigma_1^2 + \sigma_2^2}$.
- 3. [Karger.] Consider a sequence of n unbiased coin flips. Consider the length of the longest contiguous sequence of heads.
 - (a) Show that you are unlikely to see a sequence of length $c + \log_2 n$ for c > 1 (give a decreasing bound as a function of c).
 - (b) Show that with high probability you will see a sequence of length $\log_2 n O(\log_2 \log_2 n)$. Note: this observation can be used to detect cheating. When told to fake a random sequence of coin

tosses, most humans will avoid creating runs of this length under the mistaken assumption that they dont look random.

- 4. Negative Association.
 - (a) Let X_1, \ldots, X_n be independent but not necessarily identically distributed random variables. Let $\sigma_1, \ldots, \sigma_n$ be drawn from a permutation distribution on [n]. Are the variables $Y_i = X_{\sigma_i}$ negatively associated?
 - (b) Recall the following algorithm from class for estimating the mean of an unknown random variable X with mean μ and variance σ^2 . Given n = mB samples x_1, \ldots, x_n , choose $m = O(\log(1/\delta))$ blocks of size $O(1/\epsilon^2)$. Output

$$\widehat{\mu} := \operatorname{median}_{i \in [m]} \operatorname{mean}_{j \in [B]} x_{(B-1)i+j}.$$

We showed that the result is within $\epsilon \sigma$ of μ with probability $1 - \delta$. Now, suppose that our sample x_1, \ldots, x_n were not independent, but negatively associated. Would the same result hold?

- 5. [Karger.] In class we proved that the two-choices approach improves the maximum load to $O(\log \log n)$. A generalization is that choosing the least loaded of d choices reduces the maximum load to $O(\log_d \log n)$. Explain what changes to the proof are needed to derive this result. Give only the diffs; do not bother writing a complete proof.
- 6. Consider events E_1, \ldots, E_n and Q_1, \ldots, Q_n such that

$$\Pr[Q_1] = 1$$

$$\Pr[E_i] \le p \text{ for all } i$$

$$\Pr[\overline{Q}_{i+1} \mid Q_i] \le \Pr[E_{i+1} \mid Q_i] \text{ for all } i$$

Show that

$$\Pr[\overline{Q}_i] \le np \text{ for all } i.$$