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1 Overview

In this lecture we finish our discussion of sampling and look at an efficient sampling-based algorithm

for median-finding.

2 Sampling

Consider estimating the volume of a d-dimensional polytope given a way to tell if a point is inside

it or not (i.e. a separation oracle).

• Let p = probability a random point is in the polytope.

• Algorithm: Try n random points, see what fraction of them are in the polytope.

• Estimate p̂ = 1
n

∑n
i=1 Zi, where Zi = 1 if the ith point is in the polytope.

Question: how many samples do we need to get p̂ ∈ (1± ε)p?

• We get that P[
∑
Zi−E[

∑
Zi] ≥ ε ·E[

∑
Zi]] ≤ 2e

−ε2
3

∑
Zi by a Chernoff bound, as the Zi are

independent.

• This is equivalent to saying that P[|p̂− p| ≥ εp] ≤ 2e
−ε2np

3

• Which then implies that we need n = 3
pε2
× log(2δ ) samples to get a 1 − δ probability of

p̂ ∈ (1± ε)p.

• But, this requires that we already know p...

What we really need is to make sure that n ≥ 3
pε2

log(2δ ), so we sample until we get T hits.

• This will happen if
∑n

i=1 Zi ≥
10
ε2

log(2δ ) = T

• Want n̂ = (1± ε)T/p
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• For some n′, P[
∑n′

i=1 Zi 6∈ (1± ε)n′p] ≤ e−
ε2

3
n′

• Let us consider n′ = T
1+ε

– P[
∑n′

i=1 Zi ≥ (1 + ε)n′p = Tp] ≤ e−
ε2

3
n′p = e

−ε2Tp
1+ε ≤ e−ε2

T
4

– which is ≤ δ/2 if T ≥ 4
ε2

log(2δ )

• Now, consider n′ = T
1−ε

– P[
∑n′

i=1 Zi ≤ (1− ε)n′p = Tp] ≤ e−
ε2

2
n′p ≤ e−ε2

T
2

– which is ≤ δ/2 if T ≥ 2
ε2

log(2δ )

• Thus, we get that if T ≥ 4
ε2

log(2δ ) then with probability 1−δ we get that T
(1+ε)p ≤ n̂ ≤

T
(1−ε)p ,

where n̂ is the number of samples used

• This implies that T
n̂ ∈ (1± ε)p

To summarize, we’ve just shown that T = O( 1
ε2

log(1δ )) coin flips suffice to approximate p to within

ε with probability ≥ 1− δ.

3 Median-finding

Given an array of numbers, our task is to find the median. Here are some approaches that first

come to mind:

Quickselect. This is a Quicksort derivative, and works as follows. Pick a random pivot, and

separate the elements into those bigger and those smaller than the pivot. The median must

lie in the bigger of the two segments, so recursively search within this segment. (Technically

the median has a different rank within this segment, so we keep track of it; the implementation

is really a FindElementOfRank(i) rather than FindMedian.1)

A fairly standard Quicksort-like analysis reveals that the expected number of operations in

this algorithm is O(n). What about high probability bounds? Unfortunately because we

pick our pivot uniformly at random, it’s not good. Specifically, the probability of our first k

choices all lying in the first 1/k fraction of the array is at least 1/kk. When this happens,

after these k steps our array has size n(1−1/k)k ≈ n/e. Thus there’s a 1/kk chance of taking

Ω(kn) time (for all k), i.e. a 1/n chance of Ω( n logn
log logn) time. This is almost as bad as sorting,

and tells us that high probability bounds definitely do not hold.

Deterministic median-of-medians. There is actually a deterministic algorithm that works. We

divide our array into chunks of say 5, take the medians of each, and then take the median

of these medians. We then use this as a pivot, again separating elements into two piles and

recursing down the bigger one. It can be shown that this always only uses O(n) comparisons.

1This applies to the rest of this lecture as well: our median-finding algorithms are really selection algorithms.
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But from a practical point of view, the algorithm is not too simple to implement and also

suffers from bad constants.

So we discard these approaches and frame as our goal an algorithm that is simple, randomized, has

good high probability bounds, and has small constants.

Let’s try to use sampling. Here is a first attempt at an algorithm:

• Choose a sample S of size s (s� n/ log n)

• Directly sort and take the median of S (call it m), and use it as pivot

• Split the elements relative to the pivot, and recursively search for the median on the appro-

priate side

If ` is the number of elements on the median’s side, then the running time for this algorithm may

be expressed recursively as

T (n) = s log s+ n+ T (`),

where the s log s comes from sorting S and the n from splitting the elements relative to the pivot.

We can try to sample such that m is close to the real median, i.e. that rank(m) = (1± ε)n/2 with

high probability (1− 1/ poly(n)—although note that n drops quickly as we recurse down, and this

needs to dealt with carefully). Here we use rank(m) to denote m’s position in the sorted array. If

we could do this at all steps of the recursion, then we’d ensure that ` ≤ (1 + ε)n/2 always and so

T (n) ≤ n+ T (
1 + ε

2
n)

=
n

1− (1 + ε)/2
=

2n

1− ε
.

This isn’t bad, and we could set about formalizing this. But instead we will do something better,

something that is both simpler and has a better constant than 2.

The key idea is that instead of recursing down the entirety of one half, we can actually try to

use more fine-grained information about our sample’s median m: if it is really within (1 ± ε) of

the actual median, then we should really only be looking at εn/2 elements “on either side” of m.

Formally, we will let L be the (1/2 − ε)sth largest element in S, and H the (1/2 + ε)sth largest.

If rank(L) ≤ n/2 and rank(R) ≥ n/2, then the median will lie in [L,H]. We will see that we can

make this happen with high probability. Notice that this idea is similar to our analysis of sampling.

Let’s see what we can say about rank(m). In fact, more generally consider rank(x), where x is the

element of rank βs in S (m corresponds to β = 1/2). We know that rank(x) ≤ k occurs iff at least

βs elements in S have rank ≤ k. The natural thing is to use Chernoff to bound this probability.
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Let Xi = 1 if the ith sample has rank ≤ k, so that E[Xi] = k/n. Then

P[rank(x) ≤ k] = P[
s∑
i=1

Xi ≥ βs]

= P
[ s∑
i=1

Xi ≥ E[
s∑
i=1

Xi] + (β − k

n
)s
]

≤ exp(
−2((β − k

n)s)2

s
) = exp(−2(β − k

n
)2s).

To have this be ≤ 1/ poly(n), it suffices to have k
n = β −

√
logn
s . Thus whp (with high probability,

i.e. ≥ 1 − 1/ poly(n)), rank(x) ≥ n(β −
√

logn
s ). Similarly (since we only used additive Chernoff)

we can show that whp rank(x) ≤ n(β +
√

logn
s ). And so whp rank(x) = (1± ε)βn if s ≥ 1

ε2
log n.

So now fix ε =
√

logn
s . Let L be the (1/2 − ε)sth largest element of S. Plugging β = 1/2 − ε into

the above bound, we see that whp rank(L) ∈ [n/2 − 2εn, n/2]. Similarly if R is the (1/2 + ε)sth

largest element of S, then whp rank(R) ∈ [n/2, n/2 + 2εn]. When both of these happen, we have

that the true median is contained within [L,H], an interval of length ≤ 4εn = o(n), as desired.

To compute [L,H], we need to make a linear pass over all elements to classify them as R L,H. If

we compare to L first and only to R if necessary, then for roughly half the elements (specifically,

≥ n/2− 2εn of them) we avoid comparing them to R since they are less than L. So the number of

comparisons here is 3n/2 + o(n).

Once we’ve found [L,H], we can find the true median by simply sorting it. This takes at most

O(4εn log(4εn)) steps. Thus including the original step of sorting S itself, the total number of

operations is

O(s log s) +
3n

2
+O(εn log(εn)).

Plugging in ε =
√

log n/s, we see that this quantity is minimized at some appropriate s. Specifically,

plugging in s = n2/3 gives 3n/2 + n2/3 log2/3 n = 3n/2 + o(n). Thus our new algorithm is indeed

simpler, since it avoids recursion, and has a better constant (3/2 instead of 2).
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