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1 Overview

In the last lecture we intoruced Johnson Lindenstrauss lemma and covered subgaussian random
variable.

In this lecture we will cover subexponential and subgamma random variables.

2 Revisit Coupon Collector problem

Let’s recall the coupon collector problem where we collect coupons until we find all n types of
coupons. Each one that arrives is uniform on [n]. Let T be the total number you collect. In the
lecture 5, we can know T = nHn + O(n) by Chebyshev inequality with mean E[T ] and variance
Var[T ]. Now, we will deal with better concentration inequality with subexponential and subgamma
random variables.
Let Ti be the time to catch the i–th coupon. Then Ti ∼ geom(1 − i−1

n ). E[Ti] = 1
1− i−1

n

= n
n−i+1

E[T ] =
∑

E[Ti] = nHn = Θ(n log n). How can we know Pr(T ≥ nHn + t) ?

When x ∼ geom(p), P[x = t] = p(1− p)t−1 P[x ≥ t] = (1− p)t−1 ≈ e−pt 6= e−
t2

2σ2 for any σ, which
means x is not subgaussian variable. So, we cannot use concentration inequality from subgaussian.

3 Concentration Inequality

3.1 Subgaussian

A variable X of mean µ is subgaussian with parameter σ if

1. MGF – E[eλ(X−µ)] ≤ e
λ2σ2

2 for all λ ∈ R

2. Tail – P[|X − µ| > t] ≤ 2e−t
2/2σ2

for all t > 0

3. Moment – E[|X − µ|k] ≤ kk/2σk for all k > 0

The above three items are equivalent up to constant factors in σ
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3.2 Subexponential

A variable X of mean µ is subexponential with parameter σ if

1. MGF – E[eλ(X−µ)] ≤ e
λ2σ2

2 for all |λ| < 1/σ

2. Tail – P[|X − µ| > t] ≤ 2e−t/2σ for all t

3. Moment – E[|X − µ|k] ≤ kkσk for all k

The above three items are equivalent up to constant factors in σ

3.2.1 What MGF?

Suppose p(z) = e−z for all z > 0. P[Z > t] = e−t and E[Z] = 1 Then, MGF is

E[eλ(Z−1)] =

∫ ∞
0

e−zeλ(z−1)dz =
e−λ

1− λ
for λ < 1

=
1− λ+ λ2

2 −
λ3

3! + · · ·
1− λ

= 1 +
λ2

2
+ λ3(

1

2
− 1

3!
) + λ4(· · · ) + · · · ≤ e4λ2/2 for all |λ| < 1

2

There is a problem that the subexponential is not closed under adding independent copies.

3.3 Subgamma

A variable X of mean µ is subgamma with parameters (σ, c) if:

1. MGF – E[eλ(X−µ)] ≤ e
λ2σ2

2 for all |λ| < 1
c

2. Tail – P[|X − µ| > t] ≤ 2 max{e−t2/2σ2
, 2e−t/2c} for all t

Observation 1. subexponential(σ) = subgamma(σ, σ)

Observation 2. subgaussian(σ) = subgamma(σ, 0+)

Tail means

P[|X − µ| > t] ≤

{
2e−t

2/2σ2
, if |t| < σ2/c

2e−t/2c, if |t| > σ2/c

It implies that with probability 1− δ, |X − µ| ≤ max{σ
√

2 log(2/δ), 2c log(2/δ)}

Proposition 3. If X and Y are independent subgamma random variable i.e. X ∈ subgamma(σ, c1)
and Y ∈ subgamma(σ, c2), then X + Y ∈ subgamma(

√
σ2

1 + σ2
2,max(c1, c2))

Proof. for all λ < 1
max(c1,c2) , E[eλ(X+Y )] = E[eλX ]E[eλY ] ≤ e

λ2σ21
2 e

λ2σ22
2 = e

λ2

2
(
√
σ2
1+σ2

2)2
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3.3.1 Coupon Collector problem

Going back to the Coupon Collector problem,

Ti ∼ geom(1− i− 1

n
)

⇒Ti ∈ subexp(
n

n− i+ 1
) = subgamma(

n

n− i+ 1
,

n

n− i+ 1
)

⇒
∑

Ti ∈ subgamma(Θ(n),Θ(n))(∵

√√√√ n∑
i=1

(
n

n− i+ 1
)2 ≈

√
n2
π2

6
= Θ(n))

⇒P[T ≥ nHn + t] ≤ 2 ·max{e−
t2

2n2 , e−
t
2n } ≤ 2 · e−

t
2n

⇒T ≤ nHn + 2n log(2/δ) = O(n log n) with probability 1− δ

3.3.2 Bounded random variable

Let Xi ∈ [0, 1] have variance σ2
i . How about X =

∑n
i=1Xi with independent Xi’s?

Lemma 4. If random variable X ∈ [0, 1] has variance σ, then X ∈ subgamma(σ
√

2, 2)

Proof. Let Y = X − E[X]

E[eλY ] =

∞∑
k=0

E(λY )k

k!

=1 +
∞∑
k=2

λk E[Y k]

k!

(a)

≤1 +
∞∑
k=2

λkσ2

k!

≤1 +
λ2σ2

2

∞∑
k=0

λk

=1 +
λ2σ2

2(1− λ)

(a) is established by |Y k| ≤ |Y 2||Y k−2| ≤ |Y 2|

There are two methods for the concentration inequality regarding
∑
Xi.

1. a naive way with subgaussian

Xi ∈ subgaussian(
1

2
)

X ∈ subgaussian(

√
n

2
)

X = E[X]±
√

2n log(2/δ) w.p.1− δ
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2. a better way with subgamma

Xi ∈ subgamma(
√

2σ2
i , 2)

X =
∑

Xi ∈ subgamma(
√

2
∑

σ2
i , 2)

P[|X − µ| ≥ t] ≤ max{e
− t2

4
∑
σ2
i , e−

t
4 } = max{e−

t2

4Var(X) , e−
t
4 }

X = E[X]± (2
√

Var(X) log(2/δ) + 4 log(2/δ)) w.p 1− δ

4 Proof of Distributional JL

Theorem 5. (Distributional JL) There exists distributions on matrices A ∈ Rm×d such that for
any x in Rd ‖Ax‖2 = (1± ε)‖x‖2 with probability 1− δ with m = O( 1

ε2
log(1/δ))

Proof. Let x ∈ Rd with ‖x‖2 = 1. We can choose A as N (0, 1)m×d (or {−1,+1}m×d).

Aji ∈ subgaussian(1)⇒ Ajixi ∈ subgaussian(|xi|)

⇒ (Ax)j ∈ subgaussian(
∑
|xi|2) = subgaussian(1)

Let Z = (Ax)j

Z ∈ subgaussian(1)⇒ E[Z2] = 1

⇒ E[|Z2|k] = E[|Z|2k] ≤ kk

⇒ E[|Z2 − µ|k] ≤ Zkkk

⇒ Z ∈ subexponential(σ = Θ(1))

⇒
∑

(Ax)2
j ∈ subgamma(

√
m, 1)

Thus, we can get
∑

(Ax)2j
m = 1± (

√
2log(2/δ)

m + log(2/δ)
m ) with probability 1− δ if m ≥ Θ(1)log(2/δ)

ε2
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