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Lecture 15 — October 26, 2017
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NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In the last lecture we intoruced Johnson Lindenstrauss lemma and covered subgaussian random
variable.

In this lecture we will cover subexponential and subgamma random variables.

2 Revisit Coupon Collector problem

Let’s recall the coupon collector problem where we collect coupons until we find all n types of
coupons. Each one that arrives is uniform on [n]. Let T" be the total number you collect. In the
lecture 5, we can know T = nH, + O(n) by Chebyshev inequality with mean E[T] and variance
Var[T]. Now, we will deal with better concentration inequality with subexponential and subgamma
random variables.

Let T; be the time to catch the i—th coupon. Then T; ~ geom(1 — %) ET] = —= = 7=

E[T] = Y E[T;] = nH,, = ©(nlogn). How can we know Pr(T" > nH, +1t) ?

t2
When z ~ geom(p), Plz =t] = p(1 —p)! L Plx > t] = (1 — p)!~! ~ e7P! #£ e 202 for any o, which
means z is not subgaussian variable. So, we cannot use concentration inequality from subgaussian.

3 Concentration Inequality

3.1 Subgaussian

A variable X of mean p is subgaussian with parameter o if

2,2
1. MGF - E[e*X~W] < ™% forall A€ R
2. Tail - P[|X — p| > t] < 2e77/29° for all t > 0

3. Moment — EB[|X — p|*] < kF/26" for all k > 0

The above three items are equivalent up to constant factors in o



3.2 Subexponential

A variable X of mean p is subexponential with parameter o if
2252
1. MGF ~ E[e*"X=W] < ™2 for all |A| < 1/o

2. Tail — P[|X — p| > t] < 27427 for all t
3. Moment — E[|X — u|¥] < k*o* for all k

The above three items are equivalent up to constant factors in o

3.2.1 What MGF?

Suppose p(z) = e * for all z > 0. P[Z > t] = e~! and E[Z] = 1 Then, MGF is

Y
for A <1

BlMZ-D)] = /oo ez MeD g, _ €
0 1

U

1—A
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=14+ N = o). < 22 for all -
+2+)\(2 3!)+)\( )+ <e or a |/\|<2

There is a problem that the subexponential is not closed under adding independent copies.

3.3 Subgamma

A variable X of mean p is subgamma with parameters (o, ¢) if:

2,2
1. MGF — E[e*X~M)] < e for all Al <2
2. Tail - P[|X — p| > t] < 2max{e /20" 2e~t/2¢} for all t
Observation 1. subezponential(oc) = subgamma(o, o)

Observation 2. subgaussian(c) = subgamma(o,0")

Tail means
2e~t/20% if |t] < 0%/c
PIX —pu| >t < ’
X = ul >t < {2e—t/2c, it |t > 02/c
It implies that with probability 1 — ¢, |X — p| < max{o+/2log(2/6),2clog(2/0)}

Proposition 3. If X and Y are independent subgamma random variable i.e. X € subgamma(o,cy)
and Y € subgamma(o,c2), then X +Y € subgamma(y/0% 4 05, max(c1, c2))

2252 A252 2
Proof. for all A < —A— E[XX )] = E[MX B[N ] <e 2 e 2 = e (Voi+a3)? O

max(c1,c2)’



3.3.1 Coupon Collector problem

Going back to the Coupon Collector problem,

p— 1
T; ~ geom(1 — Z—)
n

n

n
=T € subexp( n—itln—i+1

) = subgamma,(

n—1+1

n

:>ZTi € subgamma(O(n),0(n))(-. Z(n—Lz—i—l)Q ~ n27r—2 =0(n))
i=1

2
=P[T >nH, +1] < 2'max{e_2%2,e_ﬁ} <2.¢

=T <nH, + 2nlog(2/d§) = O(nlogn) with probability 1 — ¢

3.3.2 Bounded random variable

Let X; € [0, 1] have variance oZ. How about X = Y7 | X; with independent X;’s?

Lemma 4. If random variable X € [0,1] has variance o, then X € subgamma(o+/2,2)

Proof. Let Y = X — E[X]

k!
k=0
> AFE[YH]
=12
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<14+ —— ZA
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(a) is established by |Y*| < |V?||[Y*2| < |V?
There are two methods for the concentration inequality regarding > Xj;.
1. a naive way with subgaussian
.1
X; € subgau551an(§)

X e subgaussian(\éﬁ)

X =E[X] £+ v/2nlog(2/6) w.p.l1—4¢



2. a better way with subgamma

X; € subgammal(y/2072,2)
X = ZXi € Subgamma(\/QZo—?ﬂ)

2
t +2

v t

P[|X — p| > ¢] < max{e ‘=77 e 1} = max{e VerX), ¢ i

X = E[X] + (2¢/Var(X) log(2/0) + 4log(2/6)) wp 1 — 6

4 Proof of Distributional JL

Theorem 5. (Distributional JL) There exists distributions on matrices A € R™*4 such that for
any x in R? ||Az||z = (1 & €)||z||2 with probability 1 — & with m = O(% log(1/5))

Proof. Let x € R? with ||x||2 = 1. We can choose A as N'(0,1)™*¢ (or {—1, +1}m*4),

Aj; € subgaussian(1) = Aj;z; € subgaussian(|x;|)
= (Az); € subgaussian(z |z;]?) = subgaussian(1)
Let Z = (ALU)J
7 € subgaussian(1) = E[Z%] =1

= E[|Z**] = E[|Z2|™] < ¥*

= B[|Z® — "] < Z*kF

= Z € subexponential(c = ©(1))

= Z(Ax)? € subgamma(y/m, 1)

)3 o o . .- . o
Thus, we can get % =1 (y/ 2 9753/5) + ! gg/ﬁ)) with probability 1 — ¢ if m > w O



