CS 388R: Randomized Algorithms Fall 2017

Lecture 2 — Sep 5, 2017
Prof. Eric Price Scribe: V. Orestis Papadigenopoulos and Patrick Rall

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In the last lecture we got a first taste of randomized algorithms, from definition to conception. We
demonstrated the main reasons why randomization is useful and presented different types of such
algorithms, as well as two examples, QuickSort and Karger’ s Min-Cut.

In this lecture we make a brief introduction to several fundamental concepts of probabilistic analysis
as well as some basic and extremely useful concentration inequalities. Moreover, we discuss the
basic randomized complexity classes, as well as some basic relations among them and among other
classes of the complexity zoo [?].

2 Probability Basics and Fundamental Inequalities

In this section, we present some basic concepts on the probabilistic analysis, as well as some
concentration inequalities that are going to be useful in the reasoning of algorithms during this
course.

2.1 Motivation

Say we flip an unbiased coin 1000 times. How many heads? Sure, probably 500. But then is it
more likely to not get exactly 5007 So around 500 I guess? How close to 5007 If I get 600 is that
a surprise?

The number of heads X is given by the binomial distribution:

1000
X ~ B(1000,1/2) PX =2] = (>2—1000
x

But that gives me no intuition! Let’s explore some tools to estimate the probabilities.

2.2 Central Limit Theorem

Let X;...X,, be independent, identically distributed (i.i.d.) random variables. Define X = """ | X;.
Then as n — 400, we have X ~ N(nE(X;),nVar(X;)). In other words X approaches the normal
distribution with n times the mean and n times the variance. This implies that the average of n

i.i.d. random variables approaches X ~ N(E(X;), %), a fact that explains our intuition that

by averaging samples from the same distribution, we become more and more confident about its
actual mean value.

Let’s apply this to our coins. By definition of the variance, we have Var(X;) = E((X; — E(X;))?) =
1/4. Therefore, for n = 1000 we have 0 = /Vary_, X; = />, VarX; = y/n/4 = v/250 ~ 16.

We can expect to be within 20 (95% chance), so we probably get 470 to 530 heads. 600 is a big
surprise!

Unfortunately, even though the Central Limit Theorem is a result of great importance in probability
theory, it does not appear to be particularly useful in theoretical computer science and randomized
analysis where we care about quantitative results and finite number of elements. In the following,
we present several tail inequalities that appear to be extremely useful in our context.

2.3 Chebyshev’s inequality

The first and simpler concentration bound we present is Markov’s inequality. Even though this
trivial bound appears to be very loose in many applications, it is useful for proving other, more
powerful inequalities.

Markov’s inequality: Let X be a non-negative random variable. It is the case that: E(X) >
tPly > t], therefore:
E(X)

Ply> 1 <=

Now, we can use Markov’s inequality to prove a way more useful bound:

Chebyshev’s inequality: Let X a random variable of variance o2 that can now take negative
values. It is the case that:
1
P|X —E(X)| > to] < o)
Proof. We would like to bound the probability that X away from its expected value more than ¢t
times its standard deviation , that is: P[|X — E(X)| > to]. Since |X — E(X)| is a non-negative

random variable, we can show using Markov’s that: P[|X —E(X)| > to] = P[(X —E(X))? > t?6?%] <

_ 2
E((XtQE(QX))) _ t% O

Back to our coin problem, using Chebyshev’s inequality for n coins such that E(X) = np and

Var(X) = % we have:
1
P[|X —E(X)| > to] < 2

In that case, for n = 1000 coins, the probability of |X — 500| > 20 is less than %. In other words,
we expect with probability greater than 3/4, the number of heads to be between [468, 516].

2.4 Chernoff’s inequalities

Chebyshev’s inequality works well for a constant chance: 1/n. But we really want that Gaussian
e=2 fall off! Can we do better?

Let X = 3" | X;, where X; are independent and x; € [0, 1] for all 4. In this case, it holds that:

212

P[X >E(X)+t<e n

2t2

PX <E(X)+t]<e

Moreover, the multiplicative versions of the above inequalities can be proved useful:

PIX > (1+) E(X)] < e~ 5reh

P[X <(1—e)E(X)] <e 2H

Back to our coin experiment, we would like to bound using Chernoff the following probability:

P[X — 500 > 20] < e2

Say we toss 10° coins with probability of heads 1073. If X = > | X;, we have E(X) = 1000.
Then:

P[negative number of heads] = P[X < E(X) — 1000] < e 2 ~ 13%

So Chernoff’s inequality is the most useful when F(X;) ~ 1/2, since it gives the best bound so
far. At a first glance, it seems weird the fact that on the last case study where the probability of
heads is really small the bound stays the same. The reason why this happens is that by definition,
Chernoff bounds make no use of the variance of the distribution of each individual sample but only
the fact that the value of every sample lays within [0, 1].

2.5 Application: Amplification

Suppose we are given an algorithm to estimate some value V' that outputs x; such that z; =V
with probability % How can we learn V' with 1 — § probability?

Suppose we repeat the algorithm k times and let x1,--- , 2 the outputs of our trials. If we order
them in a non-decreasing way and take the median then the probability that the median is not
the correct answer implies that more than half of the k trials gave the wrong answer. Therefore,
if we set y; = 1[z; = V], the event that the i-th sample returned the correct answer, then we
know for sure that y; € [0,1] (actually we know the stronger y; € {0,1}). Moreover, we know that
Ely;] = Ply;] > 2. Therefore, using the additive Chernoff bound, we can see that:

k k k
k k _2(k/6)? _k
1=1 i=1 i=1

Therefore, for k > 18log(}) we learn V with probability 1 — 4.

2.6 Application 2: Estimating a biased coin

Say we have a coin with unknown bias p. Let’s estimate p using p = % >; X;. How large n do we
need to achieve |p — p| < e with probability 1 — 47

We are wrong, i.e. [p—p| > e iff | > X; — np| > ne. Using o = /1/€2, the Chernoff bound tells
us our failure probability is less than 2e~2(en)?/n — §, (The factor of 2 comes from the fact that we

have to deal with both inequalities above.) Thus we need n > ﬁ log %.

What about multiplicative error? Suppose now that we would like to find a p, such that p €
[1 —¢€,1+ ¢€]p. Using the multiplicative version of the Chernoff bound to bound P[|p — p| > ep], we
get a bound of the form (’)(%E% log(%)). Note that the sample complexity of this bound includes
a factor of %, compared to that of the additive estimation. As a result, for small enough p, the
sample complexity may increase dramatically! Intuitively, this makes complete sense given the fact
that for really small p, the multiplicative error, even for relatively large ¢ depends also on p, a fact

that translates into a small additive error.

More information about concentration inequalities and their applications can be found in [?, ?].

3 Randomized Complexity Classes

Yes-no questions can be expressed as a language L: the set of all inputs x for which the answer is
yes. A complexity class is a set of languages, usually defined by the amount of resources given to
decide membership: x € L or x & L.

If an algorithm A claims that x € L we say “A accepts z”, or vice-versa “A rejects 7. An algorithm
decides a language L if it accepts iff x € L, and rejects iff © ¢ L. Here are some relevant classes:

e P “Deterministic Polynomial Time”. We have L € P iff there exists a polynomial-time
algorithm that decides L.

e NP “Nondeterministic Polynomial-Time”. We have L € NP iff for every input x € L there
exists some advice string y such that a polynomial-time algorithm can accept z if x € L given
the advice y.

Randomized algorithms follow a similar advice string structure, except that the advice string is
random. Think of it as a random seed. In NP there exists an advice string that can help you
decide yes-instances. For randomized algorithms we would ideally like most advice strings to work.

ZPP “Zero-error probabilistic Polynomial-Time”. L € ZPP iff there exists an algorithm that
decides L, and the expected value of its running time is polynomial. Note that this class
describes the so-called Las Vegas algorithms.

RP “Randomized polynomial time”. This class has tolerance for one-sided error, that is, L € RP
iff there exists a polynomial-time algorithm A such that:
If x € L then A accepts with probability > 1/2.
If x € L then A rejects.

In Lecture 1 we gave a randomized algorithm for MIN-CUT, which shows that MIN-cUT € RP. In
this case we can define G € MIN-CUT if GG is a graph with min-cut < ¢, where c¢ is some constant. The
algorithm we gave computed an upper bound ¢’ for the input’s min-cut, so if we say ¢’ < ¢ accepts
and ¢’ > ¢ rejects, then the algorithm sometimes rejects yes-inputs but never accepts no-inputs.

PP “Probabilistic Polynomial”. . € PP iff there exists a polynomial-time algorithm A s.t.:
If x € L then A accepts with probability > 1/2.
If ¢ L then A rejects with probability > 1/2.

This class is huge. More specifically: NP C PP. (Proof. Guess a random advice string and check
it. If it works, accept. If it fails, toss a coin to accept or reject. The tiny bias introduced by possibly
guessing the advice string satisfies both inequalities. QED.) PP algorithms are useless in the real
world because the success probability cannot be amplified with a reasonable number of repetitions.

BPP “Bounded Probabilistic Polynomial”. L € BPP iff 3 a poly-time algorithm A s.t.:
If x € L then A accepts with probability > 2/3.
If x ¢ L then A rejects with probability > 1/3.

Actually the numbers 2/3 and 1/3 are arbitrary provided they are not equal. If there is a constant
gap between the accept and reject probabilities, then we can amplify the probability as much as
we like, just by repeating the algorithm and taking the majority-vote. BPP is probably the best
complexity class to reflect the power of randomized algorithms in the real world.

What do we know?

In general, we know very little about how complexity classes relate. In this case, we do know that:

PCZPP CRP C BPP C NP CPP

What else can we say about BPP other than that BPP C NP? The class P/poly is similar to P
but algorithms are provided a polynomial-size advice string that cannot depend on the instance =z,
but only on the language and the size of the instance n.

Adelman’s theorem: BPP C P/poly.

Proof. Say we have some L € BPP. Take the BPP algorithm and amplify until the failure
probability is < 1/2""1. We will need ~ log(2"*!) ~ n + 1 repetitions, so the algorithm still runs
in polynomial time.

Say we use y as our advice string, i.e. random seed. For a fixed input x, less than 1/2"+! of all
possible y cause the algorithm to be incorrect. There exist 2™ possible inputs = of length n. Thus
less than 2" /2"+! = 1/2 possible y cause some z to fail. Thus there exist advice strings for which
the algorithm always succeeds! Thus L € P /poly. O

A good source for further information on structural (randomized) complexity theory is the book of
Arora and Barak: Computational Complezity: A Modern Approach [?]

References

[CZ] Complexity Zoo https://complexityzoo.uwaterloo.ca/Complexity_Zoo

[MUO05] Michael Mitzenmacher and Eli Upfal Probability and Computing: Randomized Algorithms
and Probabilistic Analysis Cambridge University Press, New York, 2005.

[MR95] Rajeev Motwani and Prabhakar Raghavan Randomized Algorithms Cambridge University
Press, New York, 1995.

[AB09] Sanjeev Arora and Boaz Barak Computational Complezity: A Modern Approach Cam-
bridge University Press, New York, 2009.

