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1 Overview

In the last lecture, we discussed spectral graph sparsification. In this lecture, we turn to the problem
of computing edge connectivity in DAGs.

2 Edge Connectivity

In a directed graph, the s-t edge connectivity is the maximum number of edge-disjoint paths from
s to t. This is equal to the s-t min-cut, as well as the s-t max flow. Thus, we can compute the s-t
edge connectivity in a general graph in O(m2n) time using Ford-Fulkerson. We will consider the
more specific problem of computing edge connectivity in a directed acyclic graph with maximum
degree d. Cheung, Lau, and Leung give an O(md1.38)-time algorithm in [1]. (This is the same as
the time to multiply an m× d matrix by a d×m matrix.)

For this problem, we turn to network coding.

3 Network Coding

Suppose node s (source) wants to communicate a long message to node t (target) in a communication
network, where no nodes are aware of the global graph structure. For now, we consider any directed
graph (i.e., the network may have cycles). Each directed edge may send one “packet” of information
at each time step, and all the edges send information at the same time during a time step. We
will assume that the packets are relatively large and may include some sequence number if we care
about the order of packets; henceforth we only care that after some time t knows all the packets
that s wanted to communicate, and not the order in which they arrived.

Concretely, s has k messages that it wants to send. Each of these messages is an element of F`q,
where q and ` are reasonably large. (Recall that Fq is the finite field with q elements, where q is
prime.)

Let packet size `
′

= ` + k, m
′
i = (ei|mi), where ei is the unit vector in F`q. Now, m

′
1,m

′
2, · · · ,m

′
k

are linearly independent. This guarantees that we can recover the original vectors exactly through
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Gram-Shmidt decomposition. Now, let

z =


1 0 0 m1

0
. . . 0

...
0 0 1 mk




and the source s knows span(z) ⊂ F`+kq . At each time step, any vertex v knows subspace Xv ⊂ F`
′

q

(Xv = {0}, ∀v 6= s to start with). At every time step, on every edge (u, v), u picks a random
vector w ∈ Xu and sends it to v. Any v that receives (w1, · · · , wd) from neighbors, sets Xv ←
span(Xv, w1, · · · , wd).

Definition 1. Let Yv = X⊥v = {w ∈ F`
′

q |〈w,w
′〉 = 0, ∀w′ ∈ Xv}. Say v is “aware” of w if w /∈ Yv.

The goal of the algorithm is that, at the end, t is aware of everything s is aware of.

Claim 2. If u is aware of w, v is not aware of w at a given time step, and u sends message to v.
Then,

P[v is unaware of w in the next round] ≤ 1

q
.

This result is straightforward since in order for v to be unaware of w in the next round, the

coefficient for w in the random vector should be 0. For field F`
′

q , this probability is 1/q.

On any length L path, any w that s is aware of,

P[t unaware of w after R rounds]

≤P[awareness fails to move forward ≥ r times]

≤
(
L+ r

r

)
1

qr

≤

(
e(1 + L

r )

q

)r
where R = L+ r. Therefore, after R rounds, if |Cs,t| = minimum s→ t cut size,

P[chance that t is unaware of w] ≤
(
e(1 + n

r )

q

)|Cs,t|r
. q−|Cs,t|R(1−ε)

if q ≥ 21/ε, R ≥ n/ε.

If t is aware of all w ∈ Xs, w 6= 0, then Xt must be Xs. Since |Xt| = qk, Xt = Xs w.h.p. after

qk · q−R|Cs,t|(1−O(ε)) = o(1).

Since q is large, we only need the LHS in the above equation to be less than 1
q , which gives the

sufficient condition:
k < R|Cs,t|(1−O(ε))− 1

On the other hand, we know that the capacity of the network requires the possible number of
messages to be sent satisfies

k ≤ R · `
′

l
|Cs,t| = R · |Cs,t|(1 + ε) , OPT

This is saying that the randomized network coding algorithm succeeds as long as k ≤ (1− O(ε)) ·
OPT.
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4 Applying network coding to edge connectivity

First, we will aim for O(md2) time to find the edge connectivity in a DAG. Later, we will improve
this to O(md1.38). We will consider the nodes in topological order (this can be computed in O(m)
time), and we will simulate a single round of “knowledge propagation” as described in the previous
section.

After simulating one round of communication (every edge sends exactly one message), we output
dimXt, and we hope that this is equal to |Cs,t| (as this is what we are trying to compute). Clearly,
dimXt ≤ |Cs,t|, because |Cs,t| is a bound on the amount of communication that could have been
transmitted from s to t. We would like to show that the probability that dimXt < |Cs,t| is not too
large.

To do this, we first consider the probability that the awareness of a particular vector w is transmitted
from s to t along a particular path. This is at least

(1− 1

q
)n ≥ 1− n

q
.

Thus, the probability that awareness of w is transmitted along any path is at least

1− (
n

q
)|Cs,t| = 1− q−|Cs,t|(1−logq n).

Note that the number of vectors w that t is unaware of at the end is equal to

q|X
⊥
t | = qd−dimXt ,

and the expected value of this quantity is

qd−|Cs,t|(1−logq n).

Thus, by Markov’s inequality, we have that the number of vectors w that t is unaware of is at most

qd−|Cs,t|(1−logq n)+1/2,

with high probability, and so with high probability it is also the case that

dimXt ≥ |Cs,t|(1− logq n)− 1/2.

To learn |Cs,t| exactly, we may set q > n2d, or for an approximation of |Cs,t| we may use a smaller
value of q.

We have established that with high probability we obtain the correct edge connectivity value, so
all that is left is to consider the time complexity. We transmit a vector m times, and each vector is
a random linear combination of known vectors. We can generate the coefficients and compute the
vector to transmit in O(d2) time. Upon receiving a vector from a neighbor, we simply orthogonalize
it with respect to the already-known vectors of the current node, which takes O(d2) time.

Since we repeat this process for every edge, we have a total of O(md2) time to compute edge
connectivity with high probability.

To achieve O(md1.38) time, we can reduce all of these operations to matrix operations. We can
batch the operations at every node, so that we orthogonalize all the incoming messages at the same
time.
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