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1 Overview

In the last lecture we discussed the basics of network coding.

In this lecture we discuss the application of network coding to solving edge connectivity on a DAG,
as well as introductory material on Markov chains and random walks.

2 Network Coding Analysis

Let s is the source vertex and t the destination vertex. Let Xv ⊂ Fl′q be the vector space v knows

about. If v is aware of w ∈ Fl′q , then there exists a basis vector b ∈ Xv such that 〈b, v〉 = 0. Let n
be the number of vertices in the graph. Then after R rounds,

P[t aware of w] ≥ 1− (
2e

q
)R|Cs,t|(1− n

R
)

Then if R ≥ n
ε , and q ≥ 21/ε, then

P[t aware of w] ≥ 1− q−R|Cs,t|(1−O(ε))

If t is aware of all w ∈ Xs, then Xt = Xs. Therefore,

P[Xt = Xs] ≥ 1− qkq−R|Cs,t|(1−O(ε))

We want this probability to be greater than 1 − 1
q , which occurs when k < R|Cs,t|(1 − O(ε)). If

l ≥ k
ε , then this result will be optimal.

3 Edge Connectivity on a DAG

Our goal is to find the size of the minimum cut |Cs,t| in O(md2) time, where m is the number of
edges, and d is the max degree. The idea is to run one round of network coding on the DAG, then
measure the throughput at t.
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The algorithm is as follows: we let Xs = Fdq . Note that d ≥ |Cs,t|. We then scan through the
vertices of the DAG in topological sort order, and at each (u, v), we send w ∈ Xv, which is chosen
uniformly at random. Finally, we compute the Dim(Xt), which we claim is equal to |Cs,t| w.h.p.

3.1 Analysis

To see that this is true, we first note that Dim(Xt) ≤ |Cs,t|. Let S, Sc be the minimum s − t cut
in the graph, such that s ∈ S, t ∈ Sc. Then the number of unique vectors that are transmitted
over the cut no greater than |Cs,t|, so the dimensionality of Xt can be at most |Cs,t|. With this in
mind, it is sufficient to show that Dim(Xt) ≥ |Cs,t| w.h.p.

Next, we analyze P[t aware of w] for all w ∈ Fdq . If t is aware of w, then that awareness must have
been transmitted along some s→ t path. The probability of awarness failing to pass along a given
edge is 1

q ; then by the union bound, P[awareness of w passed along a given path] ≥ 1 − n
q . Then

the probability awareness passed on any path is

P[t aware of w] ≥ 1− (
n

q
)|Cs,t|

= 1− q−|Cs,t|(1−logq n)

Let Z be the number of w that t is unaware of. Then Z = q|X
⊥
t | = qd−dim(Xt). From the above

probability

E[Z] = qd P[t aware of w]

≥ qd−|Cs,t|(1−logq n)

Z ≤ qd−|Cs,t|(1−logq n)+0.5 w.h.p

dim(Xt) ≥ |Cs,t|(1− logq n)− 0.5

The second inquality is an application of Markov’s inequality, and the third statement comes from
the definition of Z. Let q ≥ n2d, and dim(Xt) will be exact.

3.2 Runtime

For each edge (u, v), the algorithm selects a w ∈ Xu, which takes O(d2) time, and orthogonalizes it
with respect to Xv, also in O(d2) time. The total runtime is then O(md2). Using matrix operations,
we can get this down to O(md1.38).

4 Markov Chains

We now introduce the idea of Markov chains and random walks. Let n be the number of states,
and P be the transition matrix, such that Pij = P[i→ j] in the next round.
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A Markov chain is a sequence x0, x1, x2, . . . with xi ∈ [n] , such that

P[xt+1 = j|(x1, x2, . . . , xt)] = P[xt+1 = j|xt = i]

= Pij

At any time, t, the state of xt can be expressed by a probability vector q(t) ∈ Rn, such that∑
i q

(t)
i = 1. Note that q(t+1) = q(t)P .

A stationary distribution is a distrubution vector Π such that Π = ΠP . In other words, Π is a
eigenvector of P with eigenvalue 1.

The hitting time hij , is the expected number of steps required to reach state j from state i.

4.1 Fundamental Theorem of Markov Chains

A transition matrix P is ergodic if it satisfies the following:

• n is finite

• Irriducable: ∃i→ j path for all i, j ∈ [n].

• Aperiodic: ∀ states, gcd(loops) = 1.

An ergodic chain has the following characteristics:

• There exists a unique stationary distribution Π, Πi > 0.

• All distributions q will eventually converge to Π.

• hii = Π−1i

4.2 Random Walks

Consider a random walk on an undirected, unweighted graph such that

Pu,v =

{
1

d(u) if (u, v) ∈ E
0 otherwise

This random walk is ergodic iff the graph is connected (irriducible), and not bipartite (has an odd

cycle → Aperiodic). If so, then Πv = d(v)
2m , and hvv = 2m

d(v) .

4.3 More terms

Define Cu,v as the expected commute time from u to v and back to u. In other words, Cu,v =
hu,v + hv,u. Note that hu,v and hv,u are not necessarily equal; consider a lollipop graph.

Define Cu(G) as the expected cover time starting at u; that is, the expected amount of time to
visit all vertices in the graph.
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