
CS 388R: Randomized Algorithms Fall 2017

Lecture 9 — Sep. 28, 2017

Prof. Eric Price Scribe: Changyong Hu

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In the last lecture we discussed Perfect Hashing and Bloom Filters.

In this lecture we moved from hashing to routing, and we are going to use randomization to improve
routing.

2 Introduction

Suppose we have a network modeled by a directed graph with N nodes and they can communicate
with each other by sending messages through edges in the graph. Consider the communication
model that each node has a message for some nodes, all communication among nodes proceeds in
a sequence of synchronous round. In each round, each edge can only pass one message or packet.
So sending k messages over an edge takes k units of time.
What is a proper problem to analyze?

• If one node wants to communicate with other node, one just broadcasts to everyone.

• What makes it hard is if multiple nodes want to send messages. However, if every node want
to communicate with one same node, the bottleneck would happen there so it’s not interesting
either.

So we discuss permutation routing in this class:

3 Permutation Routing

Each node i wants to send a message to Π(i) ∈ [N], Π(i) is a permutation.
Question: how long does it take to route all messages?
Ideally: oblivious routing:
An oblivious routing algorithm for the permutation routing problem satisfies the following property:
the route followed by vi depends on d(i) alone, and not on d(j) for any j 6= i. vi is the packet from

1

node i, d(i) is the destination of packet from node i.

Path Pi for i→ Π(i), Pi is independent of Π(−i)
Pi = (e1, · · · , el)

ej is an edge: l is length

3.1 Hypercube Graph

N vertices: N = 2n, each vertex is indexed by n bit string.
edge i to j exists if i and j have exactly one bit difference.
Diameter n =⇒ ideally O(n) time to route.

E[distance between i and Π(i)] =
n

2

E[total number of messages passed] ≥ Nn

2

can hope for N messages/round
so hope for O(n) rounds.

Can we get O(n) time to resolve any permutation?

message that is targeted at node j, currently most significant bit b of i⊕ j, send i→ i⊕ 2b

Bit fixing routing:
fix bits left to right

Π(0101101) = 1101110

↓ 1101101

↓ 1101111

↓ 1101110

However, ∃ permutations such that bit fixing takes Ω(
√
N) time steps.

bn/2c︷︸︸︷
X 0

bn/2c︷ ︸︸ ︷
00 · · · 0

00 · · · 0 1 X

So after weight(X) times of bit fixing, where weight(X) =
∑n

i=1Xi, all the messages come to the
same position

bn/2c︷ ︸︸ ︷
00 · · · 0 0

bn/2c︷ ︸︸ ︷
00 · · · 0, next step for every node goes to

00 · · · 0 1 00 · · · 0, and final destination is

00 · · · 0 1 X︸︷︷︸
bn/2c

2

So for all X, the messengers will cross the same edge e from 00 · · · 0 to

bn/2c︷ ︸︸ ︷
00 · · · 0 1

bn/2c︷ ︸︸ ︷
00 · · · 0. Pick X to

have exact n/4 1s in it,
(n/2
n/4

)
≈
√
N/n

Claim: for all deterministic oblivious algorithms, ∃Π s.t. it takes Ω(
√

N
n) times.

3.2 Randomized routing algorithm: O(n) time

(I) Bitfixing is good for random assignment
(II) Reduce arbitrary case to random case

Define L(e): # paths that use edge e. The expectation for L(e) is the same for any e.

∵ E[L(e)] are equal for different e.

and E[total length of all paths] =
Nn

2

∴ E[L(e)] =
E[total length]

edges
=
Nn/2

Nn/2
= 1.

Time for a path p = e1, e2, · · · , el ≤
∑l

i=1 L(ei) ≤ n ·max
e
L(e).

Let L(e) =
∑

i∈[N]Hie, where Hie stands for event e ∈ Pi. Hie are independent, bounded in [0, 1].
Now we can apply chernoff bound and then union bound.

Pr[L(e) > t] < 2−t ∀t ≥ 6
Using union bound, we have max

e
L(e) ≤ O(N) w.h.p, but we need a constant bound for max

e
L(e).

Lemma 1. Let Ti be the time of path i, we have Ti ≤ n+ |Si|.

Proof. Let the path be ρi = (e1, e2, · · · , ek). For a fixed i, S is set of other paths that intersects i’s
path. If a packet is ready to follow edge ej at time t, we define its lag at time t to be t − j. The
lag of vi is initially zero, and the delay incurred by vi is its lag when it traverses ek. We will show
that each step at which the lag of vi increased by one can be charged to a distinct member of S.
When the lag of vi increases from l to l + 1, there must be at least one packet from S that wishes
to traverse the same edge as vi at that time step. Let t′ be the last time step at which any packet
in S has lagl. Thus there is a packet v ready to follow edge ej′ at t′, such that t′− j′ = l. We know
that some packet of S leaves ρi at t′. Since v is ready to follow ej′ at t′, some packet ω in S follows
ej′ at t′. Now ω leaves ρi at t′; if not, some packet will follow ej′+1 at step t′ + 1 with lag still at l,
violating the maximality of t′. We charge to ω the increase in the lag of vi from l to l+ 1; since ω
leaves ρi, it will never be charged again because paths can’t rejoin. Thus, each member of S whose
path intersects ρi is charged for at most one delay, establishing the lemma.

This lemma claims for path i,each intersecting path delays it for at most one time step.
Given Π random, for fixed Pi we know that Pr[Pi∩Pj 6= ∅] is independent of Pr[Pi∩Pk 6= ∅]. Also

3

E[|Si|] ≤ E[#(Pj , e ∈ Pj s.t. e ∈ Pi)]

≤ E[
l∑

i=1

L′(ei)]

= l ≤ n

Note that this L′(e) denotes the # of path that go through e except for Pi.
Therefore ∀e,E[L′(e)] ≤ 1.
Bounding |Si|:

Pr[|Si| ≥ t] ≤ 2−t, ∀t ≥ 2en.

=⇒ Pr[|Si| ≥ 6n] ≤ 1

N6

By Lemma. ?? we have

Pr[max
i
S ≤ 6n] ≥ 1− 1

N5

=⇒ Pr[max
i
T ≤ 7n] ≥ 1− 1

N4

The problem here is we don’t get random Π anymore, we will retrieve the randomness by randomly
picking a mid-state. Note that the routing process is reversible.

• Given Π adversarial, for each node i choose σ(i) ∈ [N] i.i.d;

• Send i→ σ(i), wait until 7n rounds are complete;

• Send σ(i)→ Π(i), wait until another 7n rounds are complete;

Thus the whole process success with prob ≥ 1− 2
N4 .

References

[MR] Rajeev Motwani, Prabhakar Raghavan Randomized Algorithms. Cambridge University Press,
0-521-47465-5, 1995.

4

