Problem Set 2

Randomized Algorithms

Due Tuesday, October 3

- 1. [Karger.] Consider a sequence of n unbiased coin flips, and look at the length of the longest contiguous sequence of heads.
 - (a) Show that you are unlikely to see a sequence of length $c + \log_2 n$ for c > 1 (give a decreasing bound as a function of c).
 - (b) Show that with high probability you will see a sequence of length $\log_2 n O(\log_2 \log_2 n)$. Note: this observation can be used to detect cheating. When told to fake a random sequence of coin tosses, most humans will avoid creating runs of this length under the mistaken assumption that they dont look random.
- 2. Negative Association.
 - (a) Let X_1, \ldots, X_n be independent but not necessarily identically distributed random variables. Let $\sigma_1, \ldots, \sigma_n$ be drawn from a permutation distribution on [n]. Are the variables $Y_i = X_{\sigma_i}$ negatively associated?
 - (b) Recall the following algorithm from class for estimating the mean of an unknown random variable X with mean μ and variance σ^2 . Given n = mB samples x_1, \ldots, x_n , choose $m = O(\log(1/\delta))$ blocks of size $O(1/\epsilon^2)$. Output

$$\widehat{\mu} := \operatorname{median}_{i \in [m]} \operatorname{mean}_{j \in [B]} x_{(B-1)i+j}.$$

We showed that the result is within $\epsilon \sigma$ of μ with probability $1 - \delta$. Now, suppose that our sample x_1, \ldots, x_n were not independent, but negatively associated. Would the same result hold?

- 3. [Karger.] In class we proved that the two-choices approach improves the maximum load to $O(\log \log n)$. A generalization is that choosing the least loaded of d choices reduces the maximum load to $O(\log_d \log n)$. Explain what changes to the proof are needed to derive this result. Give only the diffs; do not bother writing a complete proof.
- 4. [Karger.] In class, we showed that cuckoo hashing achieves worst case constant time lookups and expected constant time insertion/deletion, with O(n) space to store n items. Show how to get the same guarantees, but using only $(1 + \epsilon)n$ space for a small constant ϵ . For this problem, assume that you have access to a perfectly random hash function. **Hint:** Use the following ideas:
 - Probing more than twice in a table increases the chances of finding an empty cell.
 - If after some probes you fail to find an empty cell, move the failed item into an "overflow" table that uses cuckoo hashing.