
Problem Set 3

Randomized Algorithms

Due Tuesday, October 17

1. A minimal perfect hash function for a set S of size n is one that maps
S to [n] with no collisions. In class, we showed how to take S and
construct a minimal perfect hash function for S that can be evaluated
in constant time. The construction took expected O(n) time and the
resulting function took O(n) words to store.

Show that this last condition cannot be significantly improved upon. In
particular, show that any procedure for storing a minimal perfect hash
function requires at least Ω(n) bits for some S of size n. Assume the
universe size U is polynomial in n. Hint: show that any particular
function h is perfect for at most a 1/2Ω(n) fraction of the possible sets S.

2. [Karger.] Bloom filters can be used to estimate the difference between
two sets. Suppose that you have sets X and Y , each with m elements,
and with r elements in common. Create an n-bit Bloom filter for each,
using the same k hash functions. Determine the expected number of
bits where the two Bloom filters differ, as a function of m, n, k, and r.
Explain how this could be used as a technique for estimating r.

3. [MR 4.9]. Consider the following randomized variant of the bit fixing
algorithm. Each packet randomly orders the bit positions in the label of
its source and then corrects the mismatched bits in that order. Show that
there is a permutation for which, with high probability, this algorithm
uses 2Ω(n) steps to route.

4. [MR7.2]. Two rooted trees T1 and T2 are said to be isomorphic if there
exists a one to one mapping f from the nodes of T1 to those of T2

satisfying the following condition: v is a child of w in T1 if and only
if f(v) is a child of f(w) in T2. Observe that no ordering is assumed
on the children of any vertex. Devise an efficient randomized algorithm
for testing the isomorphism of rooted trees and analyze its performance.

1



Hint: Recursively associate a polynomial Pv with each vertex v in a tree
T .

5. The Python programming language uses hash tables (or “dictionaries”)
internally in many places. Until 2012, however, the hash function was
not randomized: keys that collided in one Python program would do
so for every other program. To avoid denial of service attacks, Python
implemented hash randomization—but there was an issue with the initial
implementation. Also, in python 2, hash randomization is still not the
default: one must enable it with the -R flag.

Find a 64-bit machine with both Python 2.7 and Python 3.5; one is
available at linux.cs.utexas.edu.

(a) First, let’s look at the behavior of hash(“a”) − hash(“b”) over n =
2000 different initializations. If hash were pairwise independent
over the range (64-bit integers, on a 64-bit machine), how many
times should we see the same value appear?

(b) How many times do we see the same value appear, for three differ-
ent instantiations of python: (I) no randomization (python2), (II)
python 2’s hash randomization (python2 -R), and (III) python 3’s
hash randomization (python3)?

(c) What might be going on here? Roughly how many “different” hash
functions does this suggest that each version has?

(d) The above suggests that Python 2’s hash randomization is bro-
ken, but does not yet demonstrate a practical issue. Let’s show
that large collision probabilities happen. Observe that the strings
“8177111679642921702” and “6826764379386829346” hash to the
same value in non-randomized python 2.

Check how often those two keys hash to the same value under
python2 -R. What fraction of runs do they collide? Run it enough
times to estimate the fraction to within 20% multiplicative error,
with good probability.

How could an attacker use this behavior to denial of service attack
a website?

(e) (Optional) Find other pairs of inputs that collide.

2


