CS 388R: Randomized Algorithms, Fall 2019 August 29th, 2019

Lecture 1: Introduction to randomized algorithms; min-cut

Prof. Eric Price Scribe: Tongzheng Ren, Garrett Bingham
NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Randomized Algorithms

Examples of Randomized Algorithms:

Primality Testing

Quick Sort

Factoring

e Hash tables

Benefits of randomized algorithms:

e Speed
e Simplicity

e Some things only possible with randomization

Keep in mind that randomness is over the choices of algorithms, not the choices of input.

Key techniques of randomized algorithms:

e Avoiding adversarial inputs
— For example, how should one choose the pivot in quicksort? One way is to always choose
the first element, but in the adversarial case, this results in O(n?) time.

— In the case of hashing, we might use some modulo function. While it may work well in
some cases, for structured input there will likely be many collisions.

Fingerprinting: compare short, random description of items

e Random sampling

Load balancing

Symmetry breaking

Probabilistic existence proofs

Types of randomized algorithms:

e Las Vegas: always correct, but the running time is random

e Monte Carlo: running time is fixed, but the algorithm is only correct with high probability

Las Vegas style algorithms can be converted to Monte Carlo algorithms by designating a fixed
stopping time 7. Monte Carlo algorithms cannot in general be made into Las Vegas algorithms.

2 Quick Sort

Algorithm 1 QuickSort(X)
Input: List X
Choose random pivot ¢ € range (len(X))
return QuickSort([X;|X; < X¢]) + [X¢] + QuickSort([X;|X; > Xi])

Expected running time

Define Z;; := number of times the ith smallest element and jth smallest element are compared &

{0,1}.

Time = O(total comparisons) = O Z Zi
1<j

Notice that:

2
PZ,j=1]=—"—
Zig =1] j—i+1
This is because the probability the ith and jth elements are compared is equal to the probability
that either the ¢th or jth element is chosen as a pivot before any of the ¢ + 1,...,7 — 1 elements
are.

Next, we have
ETime <E |3z, =Y 2 o Loy b oy oo
im il = = = n - nlogn
- i<j v i<jj_i+1 i<jj_i+1 cntl-im g ’

where f < ¢ means 3C constant that f < C'g. Notice that) ., % is the harmonic series.

3 Karger’s min-cut algorithm |]

Min-cut definition: Given some graph G = (V, E') with n vertices and m edges, a global min-cut
isaset S CV:1<|[S| <n—1 that minimizes the number of edges going from S to S (the vertices
not in S). We define the cut-value of S as the number of edges from S to S, denoted E(S, S)

Possible approaches include some traditional deterministic algorithms like the Ford—Fulkerson
method with the max-flow min-cut theorem, etc. We will discuss faster algorithms.

Algorithm 2 Karger’s min-cut algorithm

Input: Graph G = (V, E) with n vertices and m edges
while n > 2 do
Contract a random edge e(u,v): merge the vertices and remove self-loops
end while
return Preimage of the two remaining vertices

Here we allow for multiplicity (there can be multiple edges between one pair of vertices). See here
for a single run of Karger’s min-cut algorithm.

Lemma 1. Algorithm 2 succeeds with probability larger than %

Proof. Let d(u) denote the degree of vertex u.

E(S, S ind +yd 2
P[fail in the first step] = (5, 5) < min d(u) <= 2 d(u) ==
n m m n
Similarly,
P[fail in the i-th step|succeed in the i — 1-th step] < :
n—i
Thus:
n—2
. 2 n—2 n—-3 2 1 2 2
P[succeed in the all of steps] > H (1— n—i—l—i) =g n D) > —

i=1
O

When n is large, this guarantee is poor. However, if we repeat n? times and return the best result,
then the failure probability becomes

AL
n? T2 3

The time complexity is n?ma(n) = n%(mlog,, /nn) by Union-Find/Disjoint-set data structure
whose time complexity is O(a(n)).

2

4 Karger-Stein faster min-cut algorithm |]

Intuition Most of the work is done at the beginning when there is a low chance of failure.

The running time is:

T(n) =2 (T (\%) +0 (n2)> = O(n%logn)

https://en.wikipedia.org/wiki/Karger's_algorithm#/media/File:Single_run_of_Karger\OT1\textquoteright s_Mincut_algorithm.svg

Algorithm 3 Karger-Stein min-cut algorithm

Input: Graph G = (V, E) with n vertices and m edges
for i=1, 2 do

Run Algorithm 2 for % steps

Recursively run Algorithm 3
end for

return Better of the two results

since the depth of the search is O(logn) and each step takes O(n?) time.

Let P(n) denote the success probability, then

n

V2

P(n) =1 — (1 — chance one branch succeeds)? ie. P (
1 n 2
=1-(1--P(=
(-2 ()
p <n> 1 (n)2
W2/ 4 V2

We can find that P(n) = @(@). To show this, let z = log 5n and f(x) = P(22). Then

) by definition

fl@) = flz — 1)~ ;fla—1)?

We can find the solution f(z) = 2, thus P(n) = O(-). Also see [] for another approach.

logn

If we repeat Algorithm 3 O(logn) times, we get O(n?log®n) time with constant probability of
success. To see this, we consider the success probability:

1—(1—-P(n)°s" =0(1)+0 (! >

logn

is some constant. This method outperforms the O(mn?logn) time complexity approach mentioned
earlier, as in practice m can be on the order of O(n?).

References

[Kar93] David R Karger. Global min-cuts in rnc, and other ramifications of a simple min-cut
algorithm. In SODA, volume 93, pages 21-30, 1993.

[KS96] David R Karger and Clifford Stein. A new approach to the minimum cut problem. Journal
of the ACM (JACM), 43(4):601-640, 1996.

	Randomized Algorithms
	Quick Sort
	Karger's min-cut algorithm karger1993global
	Karger-Stein faster min-cut algorithm karger1996new

